We present two uniform estimates on stability and mean-field limit for the "augmented Kuramoto model (AKM)" arising from the second-order lifting of the first-order Kuramoto model (KM) for synchronization. In particular, we address three issues such as synchronization estimate, uniform stability and mean-field limit which are valid uniformly in time for the AKM. The derived mean-field equation for the AKM corresponds to the dissipative Vlasov-McKean type equation. The kinetic Kuramoto equation for distributed natural frequencies is not compatible with the frequency variance functional approach for the complete synchronization. In contrast, the kinetic equation for the AKM has a similar structural similarity with the kinetic Cucker-Smale equation which admits the Lyapunov functional approach for the variance. We present sufficient frameworks leading to the uniform stability and mean-field limit for the AKM.
Citation: Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model[J]. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
[1] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[2] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[3] | Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005 |
[4] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[5] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[6] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[7] | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787 |
[8] | Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001 |
[9] | Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031 |
[10] | Charles Bordenave, David R. McDonald, Alexandre Proutière . A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks and Heterogeneous Media, 2010, 5(1): 31-62. doi: 10.3934/nhm.2010.5.31 |
We present two uniform estimates on stability and mean-field limit for the "augmented Kuramoto model (AKM)" arising from the second-order lifting of the first-order Kuramoto model (KM) for synchronization. In particular, we address three issues such as synchronization estimate, uniform stability and mean-field limit which are valid uniformly in time for the AKM. The derived mean-field equation for the AKM corresponds to the dissipative Vlasov-McKean type equation. The kinetic Kuramoto equation for distributed natural frequencies is not compatible with the frequency variance functional approach for the complete synchronization. In contrast, the kinetic equation for the AKM has a similar structural similarity with the kinetic Cucker-Smale equation which admits the Lyapunov functional approach for the variance. We present sufficient frameworks leading to the uniform stability and mean-field limit for the AKM.
Synchronization of weakly coupled oscillators is ubiquitous in our nature, e.g., rhythmic heart beatings of pacemaker cells, synchronous flashing of fireflies and collective hand clapping in a concert hall, etc [1,6,34,35]. After Huygen's observation on two pendulum clocks hanging on the same bar, collective behaviors of weakly coupled oscillators have been reported from time to time in scientific literature (see [34]). However, major scientific progress on the collective dynamics of complex systems was initiated by Winfree and Kuramoto about a half century ago in [26,27,41]. Recently, research on the collective dynamics of complex systems has received lots of attention due to engineering applications in sensor network, mobile network and control of unmanned aerial vehicles (UAV) etc. In [22], the authors observed a formal analogy between the Cucker-Smale flocking model and the Kuramoto model for synchronization, and provide a quantitive estimate for the synchronization based on Lyapunov functional approach. In the paper, we further investigate this formal analogy and study dynamic asymptotic properties of the AKM.
Consider an ensemble of Kuramoto oscillators lying on the nodes of the complete graph with
$ \label{Ku} \displaystyle \dot{\theta}_{i} = \nu_{i} + \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\sin(\theta_{k} - \theta_{i}), ~~~ 1 \leq i \leq N, $ | (1) |
where
$ ∂tf+∂θ(L[f]f)=0, (θ,ν)∈T×R, t>0,L[f](θ,ν,t):=ν+κ∫2π0∫∞−∞sin(θ∗−θ)f(θ∗,ν∗,t)dν∗dθ∗, $ | (2) |
where
$ ∂tf+∂θ(L[f]f)=0, θ∈T, t>0,L[f](θ,t):=κ∫2π0sin(θ∗−θ)f(θ∗,t)dθ∗. $ | (3) |
In this case, the variance function
Next, we briefly explain how to bypass the aforementioned difficulty for the complete synchronization of the kinetic equation (2) for distributed natural frequencies. Our idea is to lift the first-order model (1) into a second-order model by introducing an auxiliary frequency variable
$ ˙θi=ωi, t>0, 1≤i≤N,˙ωi=κNN∑k=1cos(θk−θi)(ωk−ωi). $ | (4) |
On the other hand, we consider a mean-field limit
$ ft+ω∂θf+κ∂ω(L[f]f)=0, (θ,ω)∈T×R, t>0,L[f](θ,ω,t):=∫2π0∫∞−∞cos(θ∗−θ)(ω∗−ω)f(θ∗,ω∗,t)dθ∗dω∗. $ | (5) |
As an analogy with the kinetic Cucker-Smale model in [16], we can use the frequency variance functional
$ \Lambda_1[f] : = \int_{\mathbb T^2 \times \mathbb R^2} |\omega - \omega_*|^2 f(\theta, \omega,t) f(\theta_*, \omega_*,t) d\omega_* d\omega d\theta_* d\theta $ |
to measure the emergence of complete synchronization for (5).
In this paper, we are interested in the following questions for (4) and (5):
● (Q1): Under what conditions, can system (4) exhibit the complete synchronization?
● (Q2): Is the system (4) uniformly
● (Q3): Can we derive the mean-field kinetic equation (5) from the particle model (4) as
The first two questions might be generalized to the locally coupled Kuramoto model on a general symmetric and connected networks. However, the last question, i.e., uniform mean-field limit can be treated only for mean-field couplings (e.g., BBGKY hierarchy arguments break down for the locally coupled case). As aforementioned, since our main motivation is to study the complete synchronization of the kinetic level in a direct manner, we consider only the complete network case.
The main results of this paper are four-fold: First, we provide a sufficient framework for the complete synchronization estimate. Our sufficient conditions are expressed in terms of the coupling strength
The rest of this paper is organized as follows. In Section 2, we briefly discuss theoretical minimum for the Kuramoto model and its augmented model. In Section 3, we present a synchronization estimate for the AKM (4). In Section 4, we present a uniform
Before we proceed to the next section, we introduce the notation which will be used in the rest of the paper.
Notation. When we discuss the distance in the spatial dimension
$ |\theta|_o: = |\bar\theta| ~~ \text{where} ~~ \bar\theta \in (-\pi, \pi] ~~ \text{and} ~~\theta \equiv \bar\theta ~~ (\text{mod} ~ 2\pi). $ |
In the following discussion, we only consider the case in which the oscillators are confined in a half circle. It is obvious that
$ |\theta|_o = |\theta| ~~ \text{for} ~~ \theta \in (-\pi, \pi). $ |
For notational simplicity, we use
$D(Z):=max1≤i,j≤N|zi−zj|,‖Z‖p:=(N∑i=1|zi|p)1p, p∈[1,∞),‖Z‖∞:=max1≤i≤N|zi|,$ |
and
$ \Theta : = (\theta_1, \cdots, \theta_N), ~~ \Omega : = (\omega_1, \cdots, \omega_N), ~~{\mathcal V} : = (\nu_1, \cdots, \nu_N). $ |
In this section, we briefly review a theoretical minimum for the Kuramoto model and the augmented Kuramoto model.
In this subsection, we briefly discuss an associated conservation law, and review the state-of-the-art results on the complete synchronization for the Kuramoto model. First, we introduce a time-dependent quantity
$ {\mathcal C}(\Theta, {\mathcal V}, t) : = \sum\limits_{i = 1}^{N} \theta_i - t \sum\limits_{i = 1}^{N} \nu_i. $ |
Lemma 2.1. Let
$ \label{B-1} \frac{d}{dt} {\mathcal C}(\Theta(t),{\mathcal V}, t) = 0, ~~~~ t > 0. $ |
Proof. Let
$ \frac{d}{dt} {\mathcal C}(\Theta(t),{\mathcal V}, t) = \frac{d}{dt} \Big( \sum\limits_{i = 1}^{N} \theta_i - t \sum\limits_{i = 1}^{N} \nu_i \Big) = \sum\limits_{i = 1}^{N} {\dot \theta}_i - \sum\limits_{i = 1}^{N} \nu_i = 0. $ |
This yields the desired estimate.
Remark 1. Note that unless
Next, we discuss the equilibrium for the Kuramoto model (1). Note that the equilibrium solution
$ \label{B-0-1} \nu_{i} + \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\sin(\theta_{k} - \theta_{i}) = 0, ~~~ 1 \leq i \leq N. $ | (6) |
We sum up the equation (6) with respect to
$ \label{B-0-2} 0 = \sum\limits_{i = 1}^{N} \nu_i + \frac{\kappa}{N}\sum\limits_{i, k = 1}^{N}\sin(\theta_{k} - \theta_{i}) = \sum\limits_{i = 1}^{N} \nu_i. $ |
Thus, if the system (6) does have a solution, then the total sum of natural frequencies is zero. Hence if
Definition 2.2. [1,12,19] Let
1.
$ \theta_i(t) - \theta_j(t) = \theta_i(0) - \theta_j(0), ~~ t \geq 0, ~~~~ 1 \leq i, j \leq N. $ |
2.
$ \lim\limits_{t \to \infty} |{\dot \theta}_i(t) - {\dot \theta}_j(t)| = 0, ~~~ 1 \leq i, j \leq N. $ |
Remark 2. Note that solutions to the following equilibrium system:
$ \label{B-0-3} \nu_{i} + \frac{\kappa}{N}\sum\limits_{j = 1}^{N}\sin(\theta_{j} - \theta_{i}) = 0, ~~~ i = 1, \cdots, N,~~~ \sum\limits_{i = 1}^{N} \nu_i = 0 $ |
correspond to phase-locked states of (1).
We next briefly review the state-of-the-art result for the Kuramoto model (1). It is well known in [11,24,36] that system (1) can be lifted as a dynamical system on
$ {\dot \Theta}(t) = -\nabla_{\Theta} V(\Theta), ~~~ \mbox{where} ~~~ V(\Theta) : = -\sum\limits_{k = 1}^N \nu_k \theta_k +\frac{\kappa}{2N} \sum\limits_{1 \leq k, l \leq N} (1-\cos(\theta_k - \theta_l)). $ |
For a gradient flow system with analytical potential, uniform boundedness is equivalent to the convergence of solution toward the phase-locked state. As a dynamical system in
In the following theorem, we summarize the state-of-the-art results for the emergence of phase-locked states from generic initial data in a large coupling strength regime with
Theorem 2.3. [9,11,13,19] The following assertions hold.
1. Suppose that the initial phase configuration
$ D(\Theta^0) < \pi, ~~~ \kappa > 0, ~~~ D({\mathcal V}) = 0. $ |
Then, for any solution
$ \lim\limits_{t \to \infty} D({\dot \Theta}(t)) = 0. $ |
2. Suppose that the initial phase configuration
$ D(\Theta^0) < \pi, \kappa > D({\mathcal V}) > 0. $ |
Then, for any solution
$ D({\dot \Theta}(t)) \leq C e^{-\lambda t},~~~ {as ~t ~\to \infty}. $ |
3. Suppose that natural frequencies are distributed and initial configurations satisfy
$ D({\mathcal V}) > 0, ~~~ R^0 = \frac{1}{N} \Big| \sum\limits_{k = 1}^{N} e^{{ \rm{i}} \theta^0_k} \Big| > 0, ~~~ \theta^0_{j} \not = \theta^0_{k}, ~~~ 1 \leq j \not = k \leq N. $ |
Then there exists a large coupling strength
$ \lim\limits_{t \to \infty} \|\Theta(t) - \Theta^{\infty}\|_{\infty} = 0, $ |
where the norm
Remark 3. 1. In the course of the proof for the first statement, we can show that there exists a finite time
$ D(\Theta(t))\leq D^{\infty}, ~~\text{for }t\geq t_0.$ |
2. The result of [11] does not yield detailed asymptotic dynamics of identical Kuramoto oscillators. However, when the diameter of the emergent phase-locked state is less than
In this subsection, we discuss basic structural properties of the AKM and relationship between the Kuramoto model and AKM. We set averaged quantities and fluctuations of phase and frequency around them:
$θc:=1NN∑k=1θk, ωc:=1NN∑k=1ωk,ˆθi:=θi−θc, ˆωi:=ωi−ωc.$ |
Then, it is easy to see that the averaged quantities and fluctuations satisfy
$ \label{New-1} {\dot \theta}_c = \omega_c, ~~~~ {\dot {\hat \omega}}_i = \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\cos({\hat \theta}_{k} - {\hat \theta}_{i}) ({\hat \omega}_k - {\hat \omega}_i). $ | (7) |
Lemma 2.4. Let
$ \omega_c(t) = \omega_c(0), ~~~~\theta_c(t) = \theta_c(0) + t \omega_c(0),~~~~ t \geq 0. $ |
Proof. We sum
$ \frac{d}{dt} \sum\limits_{i = 1}^{N} \omega_i = \frac{\kappa}{N} \sum\limits_{i,k = 1}^N \cos (\theta_k - \theta_i) (\omega_k - \omega_i) = -\frac{\kappa}{N} \sum\limits_{i,k = 1}^N \cos (\theta_k - \theta_i) (\omega_k - \omega_i) = 0. $ |
The second relation follows from
Next, we discuss the relation between the first-order model (1) and the second-order model (4) which is stated in the following theorem.
Theorem 2.5. The Kuramoto model (1) is equivalent to the augmented Kuramoto model (4) in the following sense.
1. If
$ \omega_i^0 : = \nu_i + \frac{\kappa}{N} \sum\limits_{j = 1}^N \sin (\theta_{j}^0 - \theta_{i}^{0}), ~~~ i = 1, \cdots, N. $ |
2. If
$ \nu_i : = \omega_i^0 - \frac{\kappa}{N} \sum\limits_{j = 1}^N \sin (\theta_{j}^0 - \theta_{i}^{0}), ~~~ i = 1, \cdots, N. $ |
Proof. (ⅰ) Let
$ \dot{\theta}_{i} = \nu_{i} + \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\sin(\theta_{k} - \theta_{i}). $ | (8) |
We set
$ \label{B-2} \omega_i = {\dot \theta}_i $ | (9) |
and differentiate the above equation to obtain
$ \label{B-3} {\dot \omega}_i = \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\cos(\theta_{k} - \theta_{i})(\omega_k - \omega_i). $ | (10) |
We use (8) to find
$ \label{B-4} \omega_i = \nu_{i} + \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\sin(\theta_{k} - \theta_{i}). $ | (11) |
Letting
$ \label{B-5} \omega_i^0 = \nu_i + \frac{\kappa}{N} \sum\limits_{k = 1}^N \sin (\theta_{k}^0 - \theta_{i}^{0}). $ | (12) |
Finally, we combine (9), (10) and (12) to see that
(ⅱ) Let
$ \dot{\omega}_i = \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\cos(\theta_{k} - \theta_{i}) (\omega_k - \omega_i). $ |
Then, we use the relations:
$ \omega_i = {\dot \theta}_i ~~~ \mbox{and}~~~ \cos (\theta_k - \theta_i) (\omega_k - \omega_i) = \frac{d}{dt} \sin(\theta_k - \theta_i) $ |
to integrate (10) to obtain
$ \label{B-6} {\dot \theta}_i = \omega_i = \omega_{i}^0 - \frac{\kappa}{N} \sum\limits_{k = 1}^N \sin (\theta_{k}^0 - \theta_{i}^0) +\frac{\kappa}{N} \sum\limits_{k = 1}^N \sin (\theta_k - \theta_i). $ | (13) |
Then, we set
$ \label{B-7} \nu_i : = \omega_{i}^0 - \frac{\kappa}{N} \sum\limits_{k = 1}^N \sin (\theta_{k}^0 - \theta_{i}^0). $ | (14) |
Finally, we combine (13) and (14) to recover the Kuramoto model.
Before we close this section, we quote the following lemma to be crucially used in later sections.
Lemma 2.6. [21] Suppose that two nonnegative Lipschitz functions
$\displaystyle \Big| \frac{dX}{dt} \Big| \leq V, ~~~~\frac{dV}{dt} \leq -\alpha V + \gamma e^{-\alpha t} X, ~~~~ {a.e.}~~t > 0, $ |
where
$X(t)\leq \frac{2M}{\alpha}(X(0)+V(0)), ~~~~~V(t)\leq M(X(0)+ V(0))e^{-\frac{\alpha t}{2}},~~~~ t \geq 0, $ |
where
$M: = \max\Big\{1,\frac{2\gamma}{\alpha e}\Big\}+\frac{8\gamma}{\alpha^3 e^3}.$ |
In this section, we present complete synchronization estimates for the AKM (4) in
In this subsection, we present a synchronization estimate in
● Step A (Existence of positively invariant set). We identify a positively invariant set which is translation invariant in phase space.
● Step B (Derivation of Grönwall's inequality). We introduce a Lyapunov type functional and derive a Grönwall type differential inequality.
● Step C (Complete synchronization estimate). Once we derive a Grönwall type inequality for a suitable Lyapunov functional, suitable Grönwall's lemma and continuity arguments yield the desired synchronization estimate.
As candidates for Lyapunov functionals and an invariant set, we introduce phase and frequency diameters:
$ D(\Theta) : = \max\limits_{1 \leq i, j \leq N} |\theta_i - \theta_j|, ~~~~~D(\Omega) : = \max\limits_{1 \leq i, j \leq N} |\omega_i - \omega_j|, $ |
and for
$ {\mathcal S}(D^{\infty}) : = \Big \{ \Theta = (\theta_1, \cdots, \theta_N)~:~ D(\Theta) < D^\infty \Big \}. $ |
Lemma 3.1. Suppose that initial data
$ \Theta^0 \in {\mathcal S}(D^{\infty}) , ~~~~~~ \kappa > \frac{D(\Omega^0)}{\cos(D^\infty)(D^\infty- D(\Theta^0))}, ~~~~ {where}~~D^{\infty} < \frac{\pi}{2}. $ |
Then, the set
$ \Theta(t) \in {\mathcal S}(D^{\infty}), ~~~~ t \geq 0. $ |
Proof. Let
$t^* = \sup\{~t:~D(\Theta(s)) < D^\infty,~~~ 0\le s\le t\}.$ |
By the continuity, we have
$ D(\Theta(t^*)) = D^\infty. $ |
On the other hand, for any indices
$ωi(t)−ωj(t)=ω0i−ω0j+κNN∑k=1∫t0cos(θk−θi)(ωk(s)−ωi(s))ds−κNN∑k=1∫t0cos(θk−θj)(ωk(s)−ωj(s))ds.$ |
Now we choose maximal indices
$\omega_M(t): = \max\limits_{1\le i\le N} \omega_i(t), ~~~\omega_m(t): = \min\limits_{1\le i\le N} \omega_i(t).$ |
Then, for
$ D(˙Θ(t))=ωM(t)−ωm(t)=ωM(0)−ωm(0)+κNN∑k=1∫t0cos(θk(s)−θM(s))(ωk(s)−ωM(s))ds−κNN∑k=1∫t0cos(θk(s)−θm(s))(ωk(s)−ωm(s))ds. $ | (15) |
For
$ \label{C-0-0} |\theta_k(s)-\theta_M(s)| \le D^\infty, |\theta_k(s)-\theta_m(s)|\le D^\infty. $ | (16) |
Therefore, it follows from (15) and (16) that we have
$ D(˙Θ(t))≤D(˙Θ(0))+κcosD∞NN∑k=1∫t0(ωk(s)−ωM(s))ds−κcosD∞NN∑k=1∫t0(ωk(s)−ωm(s))ds=D(˙Θ(0))−κcosD∞∫t0D(˙Θ(s))ds. $ | (17) |
This yields
$ D(\dot{\Theta}(t)) \le D(\dot{\Theta}(0)) -\kappa\cos D^\infty \int_0^t D(\dot{\Theta}(s)) \,ds. $ | (18) |
We set
$ u(t): = \int_0^t D(\dot{\Theta}(s))\, ds. $ |
Then, it is easy to see that
$ \label{C-0-3-0} {\dot u}(t) = D(\dot{\Theta}(t)), ~~`u(0) = 0,~~~ \dot{u}(0) = D(\dot{\Theta}(0)). $ | (19) |
Then, the relation (18) is equivalent to
$ \label{C-0-3-1} {\dot u}(t) + \kappa \cos D^{\infty} u(t) \leq \dot{u}(0). $ | (20) |
Then, (19) and (20) yield
$ \label{C-0-4} u(t) \leq \frac{ \dot{u}(0)}{\kappa \cos D^{\infty}} \Big( 1 - e^{-\kappa (\cos D^{\infty}) t} \Big) \leq \frac{\dot{u}(0)}{\kappa \cos D^{\infty}}, ~~~t \geq 0. $ | (21) |
On the other hand, since
$\theta_i(t^*)-\theta_j(t^*) = D^\infty.$ |
Then, it follows from (4)
$D∞=θi(t∗)−θj(t∗)=θ0i−θ0j+∫t∗0(ωi(s)−ωj(s))ds≤D(Θ0)+∫t∗0D(˙Θ(s))ds≤D(Θ0)+D(˙Θ(0))κcos(D∞)<D∞,$ |
where we used the hypothesis on
Theorem 3.2. Suppose that initial data and coupling strength satisfy
$ \Theta^0 \in {\mathcal S}(D^{\infty}) , ~~~~~ \sum\limits_{i = 1}^{N} \omega^0_i = 0,~~~~~ \kappa > \frac{D(\Omega^0)}{\cos(D^\infty)(D^\infty- D(\Theta^0))}, ~~~~~{where}~~D^{\infty} < \frac{\pi}{2}. $ |
Then, we have an exponential synchronization:
$ D(\Omega(t)) \leq D(\Omega^0) e^{-\kappa \cos (D^{\infty}) t},~~~~ t \geq 0. $ |
Proof. Due to the conservation law in Lemma 2.4, we have
$ \sum\limits_{i = 1}^{N} \omega_i(t) = 0,~~~~ t \geq 0. $ |
We set extremal indices
$ \omega_M : = \max\limits_{1 \leq i \leq N} \omega_i, ~~~~~ \omega_m : = \min\limits_{1 \leq i \leq N} \omega_i. $ |
Then, it follows from
$ \label{NN-1} \dot{\omega}_M = \frac{\kappa}{N}\sum\limits_{k = 1}^{N}\cos(\theta_{k} - \theta_{i}) (\omega_k - \omega_M) \leq -\kappa \cos D^{\infty} \omega_M. $ | (22) |
Similarly, we have
$ \label{NN-2} {\dot \omega}_m \geq -\kappa \cos D^{\infty} \omega_m. $ | (23) |
Then, it follows from (22) and (23) that we have
$ \frac{d}{dt} D({\dot \Theta}(t)) \leq -\kappa \cos D^{\infty} D({\dot \Theta}), t > 0. $ |
This yields the desired exponential decay estimate.
In this subsection, we present
$ \Theta = (\theta_1, \cdots, \theta_N) ~~~ \text{and} ~~~ \Omega = (\omega_1, \cdots, \omega_N), $ |
we set
$ \|\Theta\|_p: = \Big( \sum\limits_{i = 1}^N|\theta_i|^p \Big)^{\frac{1}{p}},~~~~~ \|\Omega\|_p: = \Big( \sum\limits_{i = 1}^N|\omega_i|^p \Big)^{\frac{1}{p}},~~~~~ p \in [1, \infty). $ |
Proposition 1. Suppose that initial data and coupling strength satisfy
$ \Theta^0 \in {\mathcal S}(D^{\infty}), ~~~ \sum\limits_{i = 1}^{N} \omega^0_i = 0, ~~~~ \kappa > \frac{D(\Omega^0)}{\cos(D^\infty)(D^\infty- D(\Theta^0))}, ~~~ {where}~~D^{\infty} < \frac{\pi}{2}. $ |
Then for any solution
$ \label{C-1} \Big|\frac{d}{dt}\|\Theta\|_p \Big| \leq \|\Omega\|_p, ~~~~~ \frac{d}{dt}\|\Omega\|_p\leq -\kappa \cos(D^{\infty})\|\Omega\|_p, ~~~~ {a.e.}~t > 0. $ | (24) |
Proof. (ⅰ) Note that
$ \frac{d |\theta_i|}{dt} \leq |\omega_i|. $ |
We multiply by
$ \frac{d}{dt} \sum\limits_{i = 1}^{N} |\theta_i|^p \leq p \sum\limits_{i = 1}^{N} |\theta_i|^{p-1} |\omega_i| \leq p \Big( \sum\limits_{i = 1}^{N} |\theta_i|^{p} \Big) ^{\frac{p-1}{p}} \Big( \sum\limits_{i = 1}^{N} |\omega_i|^p \Big)^{\frac{1}{p}} \leq p \|\Theta\|_p^{p-1} \|\Omega\|_{p}. $ |
This yields the desired first differential inequality.
(ⅱ) It follows from
$ \label{C-2} |\omega_i| \frac{d|\omega_i|}{dt} = \frac{1}{2} \frac{d|\omega_i|^2}{dt} = \frac{1}{2} \frac{d\omega_i^2}{dt} = \omega_i \frac{d\omega_i}{dt} = \frac{\kappa}{N} \sum\limits_{j = 1}^N \cos (\theta_j - \theta_i) \omega_i (\omega_j - \omega_i). $ | (25) |
We use
$ d‖Ω‖ppdt=N∑i=1ddt|ωi|p=N∑i=1p|ωi|p−2|ωi|ddt|ωi|=N∑i=1p|ωi|p−2[κNN∑j=1cos(θj−θi)ωi(ωj−ωi)]=κpNN∑i=1N∑j=1cos(θj−θi)|ωi|p−2ωi(ωj−ωi)=κp2NN∑i=1N∑j=1cos(θj−θi)(ωj−ωi)(|ωi|p−2ωi−|ωj|p−2ωj). $ | (26) |
We use the monotonicity of
$ \label{C-4} (\omega_j -\omega_i)(|\omega_i|^{p-2} \omega_i -|\omega_j|^{p-2} \omega_j) \leq 0. $ | (27) |
Then, we use (26), (27),
$ \cos(\theta_j - \theta_i) \geq \cos D^{\infty} $ |
to obtain
$d‖Ω‖ppdt≤κpcosD∞2NN∑i,j=1(ωj−ωi)(|ωi|p−2ωi−|ωj|p−2ωj)=−κpcosD∞N∑i=1|ωi|p=−κpcosD∞‖Ω‖pp.$ |
This yields the desired second differential inequality.
Finally, we combine Proposition 1 and Lemma 3.1 to derive the exponential synchronization.
Theorem 3.3. Let
$ \Theta^0 \in {\mathcal S}(D^{\infty}), ~~~ \sum\limits_{i = 1}^{N} \omega^0_i = 0, ~~~ \kappa > \frac{D(\Omega^0)}{\cos(D^\infty)(D^\infty- D(\Theta^0))}, ~~~~{where}~~D^{\infty} < \frac{\pi}{2}. $ |
Then, there exists a positive constant
$ \| \Omega(t)\|_p\leq \| \Omega^0 \|_pe^{-\kappa \cos(D^{\infty}) t}, ~~~ \|\Theta(t)\|_p\leq \theta_p^{\infty}, t \geq0. $ |
Proof. The exponential decay of
$ \Big| \| \Theta(t) \|_p - \| \Theta(0) \|_p \Big| \leq \int_{0}^{t} \|\Omega(s) \|_p\,ds \leq \frac{ \| \Omega^0 \|_p}{\kappa \cos D^{\infty}} \Big( 1 - e^{-\kappa \cos (D^{\infty})t } \Big) \leq \frac{ \| \Omega^0 \|_p}{\kappa \cos D^{\infty}}. $ |
Thus, we have
$ \| \Theta(t) \|_p \leq \| \Theta^0 \|_p + \frac{ \| \Omega^0 \|_p}{\kappa \cos D^{\infty}} = : \theta_p^{\infty}(D^{\infty}, \kappa, \| \Theta^0 \|_p,\|\Omega^0\|_p ). $ |
Thanks to Theorem 3.3, we can conclude that there exists a unique phase-locked state
Corollary 1. Let
$ \Theta^0 \in {\mathcal S}(D^{\infty}), ~~~~ \sum\limits_{i = 1}^{N} \omega^0_i = 0, ~~~~ \kappa > \frac{D(\Omega^0)}{\cos(D^\infty)(D^\infty- D(\Theta^0))}, ~~~~ {where}~~D^{\infty} < \frac{\pi}{2}. $ |
Then, for any solution
$ |\theta_i(t)-\theta_i^{\infty}|\leq Ce^{-\kappa \cos(D^{\infty})t}, ~~~~ i = 1, \cdots, N. $ |
Proof. Let
$ \sup\limits_{0 \leq t < \infty} D(\Theta(t)) \leq D^{\infty}. $ |
Then, we use Theorem 3.2 to obtain
$ |θi(˜t)−θi(t)|=|∫˜ttωi(s)ds|≤∫˜tt|ωi(s)|ds≤∫˜tt(N∑i=1|ωi(s)|p)1/pds≤∫˜tt‖Ω(s)‖pds≤‖Ω0‖p∫˜tte−κcos(D∞)sds≤‖Ω0‖pκcosD∞(e−κ(cosD∞)t−e−κ(cosD∞)˜t). $ | (28) |
Then for any
$|\theta_i(\tilde{t})-\theta_i(t)| < \varepsilon.$ |
This immediately implies that there exists a unique asymptotic limit
$|\theta_i(t)-\theta_i^{\infty}|\leq Ce^{-\kappa (\cos D^{\infty})t}.$ |
In this section, we study the uniform
Let
$ \label{New-2} d_p(Z(t), {\tilde Z}(t)) : = \| \Theta(t) - {\tilde \Theta}(t) \|_p + \| \Omega(t) - {\tilde \Omega}(t) \|_p. $ | (29) |
Next, we present a uniform
Definition 4.1. The system (4) is uniformly
$ d_p(Z(t), {\tilde Z}(t)) \leq G d_p(Z_0, {\tilde Z}_0), ~~~~ t \geq 0. $ |
In the following lemma, we will derive differential inequalities for two subfunctionals
Lemma 4.2. Let
$Θ0∈S(D∞), ˜Θ0∈S(D∞), N∑i=1ω0i=0 and N∑i=1˜ω0i=0,κ>max{D(Ω0)cos(D∞)(D∞−D(Θ0)),D(˜Ω0)cos(D∞)(D∞−D(˜Θ0))}.$ |
Then, we have
$ ddt‖Θ−˜Θ‖p≤‖Ω−˜Ω‖p,a.e., t>0,ddt‖Ω−˜Ω‖p≤−κcos(D∞)‖Ω−˜Ω‖p+2κ‖˜Ω0‖pe−κcos(D∞)t‖Θ−˜Θ‖p. $ | (30) |
Proof. ● Case A (Derivation of the first inequality
$ \frac{d}{dt} (\theta_i - {\tilde \theta}_i) = \omega_i - {\tilde \omega}_i. $ |
This yields
$ \frac{d}{dt} |\theta_i - {\tilde \theta}_i| \leq |\omega_i - {\tilde \omega}_i|. $ |
We multiply by
$ \frac{d}{dt} \sum\limits_{i = 1}^{N} |\theta_i - {\tilde \theta}_i|^p \leq p \| \Theta - {\tilde \Theta} \|^{p-1}_p \| \Omega - {\tilde \Omega} \|_p. $ |
This implies the desired estimate.
● Case B (Derivation of the first inequality
$ddt(ωi−˜ωi)=κNN∑k=1[cos(θk−θi)(ωk−ωi)−cos(˜θk−˜θi)(˜ωk−˜ωi)]=κNN∑k=1cos(θk−θi)[(ωk−ωi)−(˜ωk−˜ωi)]+κNN∑k=1[cos(θk−θi)−cos(˜θk−˜θi)](˜ωk−˜ωi)=κNN∑k=1cos(θk−θi)[(ωk−˜ωk)−(ωi−˜ωi)]−κNN∑k=1sinθ∗ik[(θk−θi)−(˜θk−˜θi)](˜ωk−˜ωi).$ | (31) |
where
$ |ωi−˜ωi|ddt|ωi−˜ωi|=(ωi−˜ωi)ddt(ωi−˜ωi)=κNN∑k=1cos(θk−θi)(ωi−˜ωi)[(ωk−˜ωk)−(ωi−˜ωi)]−κNN∑k=1sinθ∗ik[(θk−˜θk)−(θi−˜θi)](ωi−˜ωi)(˜ωk−˜ωi).≤κNN∑k=1cos(θk−θi)(ωi−˜ωi)[(ωk−˜ωk)−(ωi−˜ωi)]+κNN∑k=1[|θk−˜θk|+|θi−˜θi|]|ωi−˜ωi||˜ωk−˜ωi|. $ | (32) |
We use (32) and similar argument used in Proposition 1 to obtain
$ ddt‖Ω−˜Ω‖pp=N∑i=1ddt|ωi−˜ωi|p=N∑i=1p|ωi−˜ωi|p−2|ωi−˜ωi|ddt|ωi−˜ωi|≤κpN∑i,kcos(θk−θi)|ωi−˜ωi|p−2(ωi−˜ωi)[(ωk−˜ωk)−(ωi−˜ωi)]+κpN∑i,k(|θk−˜θk|+|θi−˜θi|)|ωi−˜ωi|p−1|˜ωk−˜ωi| $ | (33) |
By Hölder's inequality, we have
$∑i,k|θk−˜θk||ωi−˜ωi|p−1|˜ωk−˜ωi|≤(∑i,k|ωi−˜ωi|p)p−1p(∑i,k|θk−˜θk|p|˜ωk−˜ωi|p)1p≤ND(˜Ω)‖Θ−˜Θ‖p‖Ω−˜Ω‖p−1p$ |
and similarly
$ \sum\limits_{i,k} |\omega_i - {\tilde \omega}_i|^{p-1} |\theta_i - {\tilde \theta}_i| |{\tilde \omega}_k - {\tilde \omega}_i | \leq N D({\tilde \Omega}) \| \Omega - {\tilde \Omega} \|^{p-1}_p \| \Theta - {\tilde \Theta} \|_p.$ |
Then, by using these estimation and relation (33), we obtain
$\frac{d}{dt}\|\Omega-\tilde{\Omega}\|_p^p\le -\kappa p \cos (D^{\infty}) \| \Omega - {\tilde \Omega} \|_p^p + 2 \kappa p D({\tilde \Omega}) \|\Theta - {\tilde \Theta} \|_p \| \Omega - {\tilde \Omega} \|_p^{p-1}.$ |
By applying the relation
We combine Lemma 2.6 and Lemma 4.2 to obtain the uniform
Theorem 4.3. Suppose that initial data and coupling strength satisfy the following relations:
$Θ0∈S(D∞), ˜Θ0∈S(D∞), N∑i=1ω0i=0 and N∑i=1˜ω0i=0,κ>max{D(Ω0)cos(D∞)(D∞−D(Θ0)),D(˜Ω0)cos(D∞)(D∞−D(˜Θ0))}.$ |
Then, for any two solutions
As a direct application of Theorem 4.3, we have the following corollary for the first-order Kuramoto model (1).
Corollary 2. Suppose that initial data and coupling strength
$Θ0∈S(D∞), ˜Θ0∈S(D∞), N∑i=1νi=0, N∑i=1˜νi=0,κ>max{D(Ω0)cos(D∞)(D∞−D(Θ0)),D(˜Ω0)cos(D∞)(D∞−D(˜Θ0))}.$ |
Then, for any two solutions
$ \label{NE-0-0} \|\Theta(t)-{\tilde \Theta}(t)\|_p\le C\Big[\|\Theta^0-{\tilde \Theta}^0\|_p+\|{\mathcal V}-{\tilde {\mathcal V}}\|_p\Big],~~~ t \geq 0. $ |
Proof. Let
$ \label{NE-0} (\theta_1^0, \cdots, \theta_N^0),~~(\nu_1, \cdots, \nu_N); ~~~~ ({\tilde \theta}_1^0, \cdots, {\tilde \theta}_N^0),~~({\tilde \nu}_1, \cdots, {\tilde \nu}_N). $ | (34) |
On the other hand, we also set initial frequencies:
$ ω0i:=νi+κNN∑j=1sin(θ0j−θ0i),˜ω0i:=˜νi+κNN∑j=1sin(˜θ0j−˜θ0i). $ | (35) |
Then, we solve the second-order system (4) with initial data (34) and (35). It follows from the equivalence relation between KM (1) and AKM (4) in Theorem 4.3 and Theorem 4.3 that we have
$ \label{NE-2} \|\Theta(t)-{\tilde \Theta}(t)\|_p\le C\Big[\|\Theta^0-{\tilde \Theta}^0\|_p+\|\Omega^0-\tilde\Omega^0\|_p\Big], $ | (36) |
where
$|ω0i−˜ω0i|≤|νi−˜νi|+κNN∑j=1|sin(θ0j−θ0i)−sin(˜θ0j−˜θ0i)|≤|νi−˜νi|+κNN∑j=1(|θ0j−˜θ0j|+|θ0i−˜θ0i|).$ |
This yields
$ \label{NE-3} \|\Omega^0-\tilde\Omega^0\|_p\le C\Big[\|\Theta^0-{\tilde \Theta}^0\|_p + \|\mathcal V-\tilde{\mathcal V} \|_p\Big]. $ | (37) |
Finally, we combine (36) and (37) to obtain the desired stability estimate.
In this section, we present the uniform mean-field limit for the AKM in a measure theoretic framework. The limiting mean-field kinetic equation can be formally derived from the particle model (4) via the formal procedure of BBGKY hierarchy, and it can be rigorously justified using the standard empirical measure approximations and local-in-time stability estimates in Monge-Kantorovich distance which is equivalent to Wasserstein-
The formal BBGKY hierarchy procedure yields a formal mean-field limit of system (4) toward the mean-field kinetic equation as
$ {ft+ω∂θf+∂ω(L[f]f)=0, (θ,ω)∈T×R, t>0,L[f](θ,ω,t):=κ∫2π0∫∞−∞cos(θ∗−θ)(ω∗−ω)f(θ∗,ω∗,t)dθ∗dω∗. $ | (38) |
Recall that our main purpose of this section is to justify the rigorous transition from (4) to (38) in the mean-field limit
In this subsection, we briefly discuss some framework which embodies (4) and (38) in a common framework. For this, we first review concept of measure-valued solutions to (38).
Let
$\langle\mu,f\rangle = \int_{\mathbb T\times\mathbb R}f(\theta,\omega) \, d\mu(\theta,\omega), ~~~~f \in C_0(\mathbb T\times\mathbb R).$ |
Next, we recall several definitions to be used later.
Definition 5.1. [7] For
1. Total mass is normalized:
2.
$ \langle\mu_t,f\rangle~\mbox{is continuous in $t$} ~~~ \forall~f \in C_0^1(\mathbb T\times\mathbb R\times [0,T)). $ |
3.
$ \label{msol} \langle\mu_t, \varphi(\cdot,\cdot,t)\rangle-\langle \mu_0, \varphi(\cdot,\cdot,0)\rangle = \int_0^t\langle\mu_s,\partial_s \varphi + \omega\partial_\theta \varphi + L[\mu_s] \partial_\omega \varphi \rangle \, ds, $ |
Remark 4. Note that for a solution
$ \label{PP-1} \mu^N_t : = \frac{1}{N} \sum\limits_{i = 1}^{N} \delta_{\theta_i} \otimes \delta_{\omega_i}, $ |
is a measure-valued solution in the sense of Definition 5.1 to (38). Thus, ODE solution to (4) can be understood as a measure-valued solution for (38). Likewise, the classical solution for the kinetic AKM model (38) is also a measure-valued solution as well. Thus, we can treat the particle and kinetic AKM models in the same framework.
We now discuss how to measure the distance between the solutions of (4) and (38) by equipping a metric to the probability measure space
1. For
$\langle\mu, \|z - z_0\|_p^p \rangle < +\infty.$ |
Then, Wasserstein
$W_{p}(\mu,\nu): = \inf\limits_{\gamma\in\Gamma(\mu,\nu)} \Big( \int_{\mathbb T^2\times\mathbb R^2} \|z-z^*\|_p^p \, d\gamma(z,z^*) \Big)^{\frac{1}{p}}, $ |
where
2. If
3. For any
$ \lim\limits_{N\rightarrow +\infty}W_p(\mu_0^N,\mu_0) = 0 ~~~ \Longleftrightarrow ~~~ \lim\limits_{N\rightarrow +\infty}W_p(\mu_t^N,\mu_t) = 0,$ |
where
For later use, we quote two results on the approximation of a measure by empirical measures and mean-field limit in any finite time interval without proofs.
Proposition 2. [40] For any given
$ \mu^N~ has ~a~ common ~compact ~support ~with~\mu ~and~~ \lim\limits_{N\rightarrow+\infty}W_p(\mu^N,\mu) = 0. $ |
Remark 5. The construction of the approximation can be followed by the method of Theorem 6.18 in the book [40] by finding a sequence of atomic measures
In this subsection, we present a uniform mean-field limit to the kinetic equation (38). We basically follow the approach given in [21], Corollary 1 and Lemma 3.2.
Theorem 5.3. Suppose that the initial probability measure
$ Dμ0Θ≤D∞<π2,∫T×Rωμ0(dθ,dω)=0,∫T×Rμ0(dθ,dω)≤m0,∫T×R(|θ|p+|ω|p)μ0(dθ,dω)≤m2,κ>Dμ0ωcos(D∞)(D∞−Dμ0Θ), $ | (39) |
where
1. There exists a unique measure-valued solution
$\varlimsup\limits_{N\rightarrow +\infty}\sup\limits_{t\in[0,+\infty)}W_{p}(\mu_t^N,\mu_t) = 0.$ |
2. Suppose that
$ W_{p}(\mu_t, \nu_t) \leq G W_{p}(\mu_0, \nu_0), ~~~ t \in [0, \infty).$ |
Proof. Since the overall proof of Theorem 5.3 is almost the same as that of Corollary 1.1 in [21], we will provide only sketch of the proof.
● Step A (Extraction of Cauchy approximation for
$ \label{F-1} \lim\limits_{N\rightarrow+\infty}W_p(\mu_0^N,\mu_0) = 0. $ | (40) |
The existence of such approximation is guaranteed by [40]. Then, owing to (40), for any
$W_p(\mu^n_0,\mu^m_0) < \varepsilon,~~ for ~\ n,m > N(\varepsilon).$ |
● Step B (Approximation of
$ \left|W_p^p(\mu_0^n,\mu_0^m)-\frac{1}{M_{mn}}\sum\limits_{k = 1}^{M_{mn}}\|z_{k0}-\bar{z}_{k0}\|_p^p\right|\le \varepsilon^p, $ | (41) |
where,
● Step C (Lifting the information at time
$ W^p_p(\mu_t^n,\mu_t^m)\le 2^{p-1}G^p(W_p^p(\mu_0^n,\mu_0^m)+\varepsilon^p)\le2^pG^p\varepsilon^p. $ | (42) |
which implies that the sequence
$\sup\limits_{t\in[0,+\infty)}W_p(\mu^n_t,\mu_t)\leq 4G\varepsilon,~~~ \mbox{for}~~~ n > L.$ |
This yields
$ \varlimsup\limits_{N\rightarrow +\infty}\sup\limits_{t\in[0,+\infty)}W_p(\mu_t^N,\mu_t) = 0. $ | (43) |
The uniform compact support of
● Step D (Uniform stability of kinetic equation). For measures
$ W_p(\mu, \mu^n) < \frac{\varepsilon}{2}, ~~~~ W_p(\nu^n, \nu) < \frac{\varepsilon}{2} ~~~~ \text{and} ~~~~ n \geq N_0(\varepsilon). $ |
Then, we use the above estimates and (42) to obtain
$Wpp(μt,νt)≤(Wp(μt,μnt)+Wp(μnt,νnt)+Wp(νnt,νt))p≤(ε+Wp(μnt,νnt))p≤2p−1(εp+Wpp(μnt,νnt))≤2p−1(2εp+GpWpp(μn0,νn0)).$ |
Letting
$ W^p_p(\mu_t, \nu_t) \leq 2^{p} \varepsilon^p + 2^{p-1} G^p W_p^p(\mu_0,\nu_0). $ |
Since
$ W_p(\mu_t, \nu_t) \leq 2^{\frac{p-1}{p}} G W_p(\mu_0, \nu_0), t \geq 0. $ |
Remark 6. The same arguments can be applied for the mean-field limit for the Kuramoto model to the corresponding kinetic equation uniform in time in the class of synchronizing solutions in the next section.
As a direct application of Theorem 5.3, we have the following synchronization estimate for the measure-valued solutions to (38).
Corollary 3. Suppose that the assumptions (39) hold, and let
$\Big( \int_{\mathbb T\times\mathbb R} |\omega|^p \, d\mu_t\Big)^{\frac{1}{p}} \leq C e^{-\kappa (\cos D^{\infty}) t} \Big(\int_{\mathbb T\times\mathbb R}|\omega|^p \, d\mu_0\Big)^{\frac{1}{p}}.$ |
Proof. Let
$ \label{ineq} \Big( \int_{\mathbb R^{2d}} |\omega|^p \, d\mu_t^N\Big)^{\frac{1}{p}} \leq e^{-\kappa(\cos D^{\infty}) t} \Big(\int_{\mathbb R^{2d}}|\omega|^p \, d\mu_0^N\Big)^{\frac{1}{p}}. $ | (44) |
On the other hand, since
$\lim\limits_{N\rightarrow 0} W_{p}(\mu_t^N, \mu_t) = 0. $ |
This implies the weak convergence of
$\Big( \int_{\mathbb R^{2d}} |\omega|^p \, d\mu_t\Big)^{\frac{1}{p}} \leq e^{-\kappa(\cos D^{\infty}) t} \Big(\int_{\mathbb R^{2d}}|\omega|^p \, d\mu_0\Big)^{\frac{1}{p}}.$ |
In this subsection, we present an alternative approach for the complete synchronization estimate for (38) introduced in previous subsection. As mentioned in abstract, the kinetic equation (38) for the AKM is more suitable for the Lyapunov functional approach, compared to the kinetic Kuramoto equation for the KM with distributed natural frequencies. For simplicity of presentation, we suppress
$ f(\theta, \omega) : = f(\theta, \omega, t), ~~~ \theta \in [0, 2\pi],~~\omega \in \mathbb R. $ |
Lemma 5.4. Let
$ \frac{d}{dt}\int_0^{2\pi}\int_{-\infty}^{\infty} f \, d\omega d\theta = 0, ~~~~~ \frac{d}{dt}\int_0^{2\pi}\int_{-\infty}^{\infty} \omega f \, d\omega d\theta = 0, ~~~~~ t > 0. $ |
Proof. It directly comes from multiplying by
Next, we discuss the derivation of the complete (frequency) synchronization estimate. For this, we use the Lyapunov functional defined as follows.
$ \Lambda[f(t)] : = \int_0^{2\pi} \int_{-\infty}^{\infty} |\omega - \omega_c|^2 f(\theta, \omega) \, d\omega d\theta, ~~~~~ \omega_c : = \frac{\int_0^{2\pi}\int_\mathbb R \omega f \, d\omega d\theta}{\int_0^{2\pi}\int_\mathbb R f \, d\omega d\theta}, $ | (45) |
where
If complete synchronization occurs, it is natural to expect that frequency will converge to
Theorem 5.5. Let
$ D^0_\Theta \le D^\infty < \frac{\pi}{2},$ |
where
$\Lambda[f(t)] \le\Lambda[f^0]e^{-2\kappa (\cos D^\infty)\|f_0\|_{L^1}t}, ~~~~{as ~t ~\to \infty}. $ |
Proof. It follows from Lemma 3.1 and condition for support of initial data that we have
$D_\Theta(t) \le D^\infty < \frac{\pi}{2},$ |
where
$ddtΛ[f]=∫2π0∫R(ω−ωc)2∂tfdωdθ=−∫2π0∫R(ω−ωc)2ω∂θfdωdθ−∫2π0∫R(ω−ωc)2∂ω(L[f]f)dωdθ=∫2π0∫R2(ω−ωc)(L[f]f)dωdθ=2κ∫[0,2π]2×R2cos(θ∗−θ)(ω−ωc)(ω∗−ω)f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=2κ∫[0,2π]2×R2cos(θ∗−θ)ω(ω∗−ω)f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗−2κ∫[0,2π]2×R2cos(θ∗−θ)ωc(ω∗−ω)f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=:I1+I2.$ |
Next, we estimate the terms
● (estimate of
$I1=2κ∫[0,2π]2×R2cos(θ∗−θ)ω(ω∗−ω)f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=−κ∫[0,2π]2×R2cos(θ∗−θ)(ω∗−ω)2f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗≤−κcosD∞∫[0,2π]2×R2((ω∗−ωc)−(ω−ωc))2f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=−κcosD∞∫[0,2π]2×R2(ω∗−ωc)2f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗+2κcosD∞∫[0,2π]2×R2(ω∗−ωc)(ω−ωc)f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗−κcosD∞∫[0,2π]2×R2(ω−ωc)2f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=−2κcosD∞∫[0,2π]2×R2(ω−ωc)2f(θ,ω)f(θ∗,ω∗)dθdθ∗dωdω∗=−2κcosD∞‖f0‖L1Λ[f],$ |
where we use the condition
● (estimate of
$\mathcal{I}_2 = -2\kappa\omega_c\int_{[0,2\pi]^2\times\mathbb R^2}\cos(\theta_*-\theta)(\omega_*-\omega)f(\theta,\omega)f(\theta_*,\omega_*) \, d\theta d\theta_* d\omega d\omega_* = 0.$ |
From the estimation of
$\frac{d}{dt}\Lambda[f]\le -2\kappa\cos D^\infty \|f_0\|_{L^1}\Lambda[f].$ |
By using Grönwall's lemma, we can obtain the desired exponential decay.
In this section, we study the uniform mean-field limit of the Kuramoto model and as a direct application of previous results, we also show the existence of phase-locked states for the kinetic Kuramoto equation via uniform mean-field limit by lifting particle results to the kinetic regime. For the local-in-time stability and mean-field limit of the kinetic Kuramoto equation, we refer to [28].
Let
$ {∂tf+∂θ(v[f]f)=0,(θ,ν)∈T×R, t>0,v[f](θ,ν,t)=ν+κ∫2π0sin(θ∗−θ)f(θ∗,ν∗,t)dν∗dθ∗. $ | (46) |
Note that the probability density function
$ \int_0^{2\pi}f(\theta,\nu,t)d\theta = g(\nu).$ |
Unlike to (38), it is not clear how to show the emergence of the complete frequency synchronization for (46) using the nonlinear functional approach as in Section 5.3. This is why we introduce a second order model (4) and its mean-field limit (38). Similar to Definition 5.2, we can define the measure valued solution of the kinetic Kuramoto equation (46).
Definition 6.1. [7] For
1. Total mass is normalized:
2.
$ \langle\mu_t,f\rangle~\mbox{is continuous in $t$} ~~~ \forall~f(\theta,\nu) \in C_0^1(\mathbb T\times\mathbb R\times [0,T)). $ |
3.
$ \langle\mu_t, \varphi(\cdot,\cdot,t)\rangle-\langle \mu_0, \varphi(\cdot,\cdot,0)\rangle = \int_0^t\langle\mu_s,\partial_s \varphi + v[\mu] \partial_\theta \varphi \rangle \, ds. $ | (47) |
Remark 7. As mentioned in Remark 4, both the solution of the original Kuramoto model (1) and the solution of the kinetic equation (46) can be viewed as a measure valued solution in the sense of Definition 6.1. Thus, we can apply the Wasserstein metric in Definition 5.2 to measure the distance between two measure valued solutions.
According to Proposition 2 and Remark 5, we have the following result.
Theorem 6.2. Suppose that initial probability measure
$ Dμ0Θ≤D∞<π2, ∫2π0νμ0(dθ,dν)=0, ∫T×Rμ0(dθ,dν)≤m0,∫T×R(|θ|p+|ν|p)μ0(dθ,dν)≤m2, κ>Dμ0ωcos(D∞)(D∞−Dμ0Θ). $ | (48) |
Then, the following assertions hold. For
1. There exists a unique measure-valued solution
$\varlimsup\limits_{N\rightarrow +\infty}\sup\limits_{t\in[0,+\infty)}W_{p}(\mu_t^N,\mu_t) = 0.$ |
2. Moreover, if
$ W_{p}(\mu_t, {\tilde \mu}_t) \leq G W_{p}(\mu_0, {\tilde \mu}_0), ~~~t \in [0, \infty).$ |
Proof. The construction of the proof is similar to Theorem 5.3. In fact, as the distribution of natural frequency
$\inf\limits_{\gamma\in\Gamma(\mu_t,{\tilde \mu}_t)}\int_{\mathbb T^2 \times\mathbb R^2}|\nu-\bar{\nu}|^p \, \gamma(\nu,\bar{\nu}) = \inf\limits_{\gamma\in\Gamma(\mu_0,{\tilde \mu}_0)}\int_{\mathbb T^2\times\mathbb R^2}|\nu-\bar{\nu}|^p \, \gamma(\nu,\bar{\nu}).$ |
Therefore, we only need to control the variance on
Now, for large time behavior, we can apply Corollary 1 to the approximate solution
Corollary 4. (Emergence of a phase-locked state) Suppose that the initial data
$W_p(\mu_t,\mu_{\infty})\leq Ce^{-K D^{\infty}t}, ~~~~{as ~t ~\to \infty}. $ |
Proof. It follows from Corollary 1 that for each
$W_p(\mu^N_t,\mu^N_{\infty})\leq Ce^{-\kappa D^{\infty}t}.$ |
Notice here the
$W_p(\mu_t,\mu_{\infty})\leq W_p(\mu_t,\mu^N_t)+W_p(\mu^N_t,\mu^N_{\infty})+W_p(\mu^N_{\infty},\mu_{\infty})\leq 2\varepsilon+Ce^{-\kappa D^{\infty}t}.$ |
Thus, we have
$W_p(\mu_t,\mu_{\infty})\leq Ce^{- \kappa D^{\infty}t}.$ |
We presented the dynamic properties of the augmented Kuramoto model which is a second-order lifting of the Kuramoto model for synchronization. For the particle Kuramoto model with distributed natural frequencies, the complete (frequency) synchronization can be studied by analyzing the temporal evolution of
[1] |
The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys (2005) 77: 137-185. ![]() |
[2] | Existence of partial entrainment and stability of phase-locking behavior of coupled oscillators. Prog. Theor. Phys. (2004) 112: 921-941. |
[3] |
Exponential dephasing of oscillators in the kinetic Kuramoto model. J. Stat. Phys. (2016) 162: 813-823. ![]() |
[4] |
On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. (2015) 13: 1775-1786. ![]() |
[5] |
J. Bronski, L. Deville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197
![]() |
[6] |
Biology of synchronous flashing of fireflies. Nature (1966) 211: 562-564. ![]() |
[7] |
Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. (2014) 156: 395-415. ![]() |
[8] |
Phase transitions and topology changes in configuration space. J. Statist. Phys. (2003) 111: 1091-1123. ![]() |
[9] |
Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D (2012) 241: 735-754. ![]() |
[10] |
On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control (2009) 54: 353-357. ![]() |
[11] |
Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. (2013) 11: 465-480. ![]() |
[12] |
Synchronization in complex networks of phase oscillators: A survey. Automatica (2014) 50: 1539-1564. ![]() |
[13] |
On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst (2011) 10: 1070-1099. ![]() |
[14] |
Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol (1985) 22: 1-9. ![]() |
[15] |
A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun. Math. Sci. (2009) 7: 297-325. ![]() |
[16] |
From particle to kinetic and hydrodynamic description of flocking. Kinet. and Relat. Model. (2008) 1: 415-435. ![]() |
[17] |
On the complete synchronization for the globally coupled Kuramoto model. Physica D (2010) 239: 1692-1700. ![]() |
[18] |
Remarks on the complete synchronization of Kuramoto oscillators. Nonlinearity (2015) 28: 1441-1462. ![]() |
[19] |
Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci (2016) 4: 1073-1091. ![]() |
[20] |
Collective synchronization of classical and quantum oscillators. EMS Surveys in Mathematical Sciences (2016) 3: 209-267. ![]() |
[21] | S.-Y. Ha, J. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, To appear to Kinet. and Relat. Model. |
[22] |
Flocking and synchronization of particle models. Quart. Appl. Math. (2011) 69: 91-103. ![]() |
[23] |
A fast-slow dynamical systems theory for the Kuramoto type phase model. J. Differential Equations (2011) 251: 2685-2695. ![]() |
[24] |
Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differential Equations (2013) 255: 3053-3070. ![]() |
[25] | On the stability of the Kuramoto model of coupled nonlinear oscillators. Proceedings of the American Control Conference (2014) 4296-4301. |
[26] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3
![]() |
[27] | Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. |
[28] |
On the vlasov limit for systems of nonlinearly coupled oscillators without noise. Transport Theory and Statistical Physics (2005) 34: 523-535. ![]() |
[29] |
D. Mehta, N. S. Daleo, F. Dörfler and J. D. Hauenstein, Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis, Chaos, 25 (2015), 053103, 7pp. doi: 10.1063/1.4919696
![]() |
[30] |
The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Science (2007) 17: 309-347. ![]() |
[31] |
The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D (2005) 205: 249-266. ![]() |
[32] |
Stability of incoherence in a population of coupled oscillators. J. Stat. Phys (1991) 63: 613-635. ![]() |
[33] |
H. Neunzert, An introduction to the nonlinear boltzmann-vlasov equation, In Kinetic Theories and the Boltzmann Equation(Montecatini, 1981), 60-110, Lecture Notes in Math., 1048, Springer, Berlin, 1984. doi: 10.1007/BFb0071878
![]() |
[34] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
![]() |
[35] |
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D (2000) 143: 1-20. ![]() |
[36] | Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. (1993) 72: 145-166. |
[37] |
A convergence result for the Kurmoto model with all-to-all couplings. SIAM J. Appl. Dyn. Syst. (2011) 10: 906-920. ![]() |
[38] |
On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. (2009) 8: 417-453. ![]() |
[39] |
Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. (2008) 7: 134-160. ![]() |
[40] |
C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9
![]() |
[41] |
Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. (1967) 16: 15-42. ![]() |
1. | G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, 2019, 29, 0218-2025, 1901, 10.1142/S0218202519500374 | |
2. | Chanho Min, Hyunjin Ahn, Seung-Yeal Ha, Myeongju Kang, Sufficient conditions for asymptotic phase-locking to the generalized Kuramoto model, 2023, 16, 1937-5093, 97, 10.3934/krm.2022024 | |
3. | Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim, Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit, 2021, 20, 1534-0392, 4209, 10.3934/cpaa.2021156 | |
4. | Seung-Yeal Ha, Myeongju Kang, Hansol Park, Tommaso Ruggeri, Woojoo Shim, Uniform stability and uniform-in-time mean-field limit of the thermodynamic Kuramoto model, 2021, 79, 0033-569X, 445, 10.1090/qam/1588 | |
5. | Seung-Yeal Ha, Jeongho Kim, Peter Kuchling, Oleksandr Kutoviy, Infinite particle systems with collective behaviour and related mesoscopic equations, 2019, 60, 0022-2488, 122704, 10.1063/1.5095487 | |
6. | Seung-Yeal Ha, Dohyun Kim, Emergent Behavior of a Second-Order Lohe Matrix Model on the Unitary Group, 2019, 175, 0022-4715, 904, 10.1007/s10955-019-02270-y | |
7. | Javier Morales, Jan Peszek, Eitan Tadmor, Flocking With Short-Range Interactions, 2019, 176, 0022-4715, 382, 10.1007/s10955-019-02304-5 | |
8. | Seung-Yeal Ha, Dohyun Kim, Jeongho Kim, Xiongtao Zhang, Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization, 2019, 60, 0022-2488, 051508, 10.1063/1.5051788 | |
9. | Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart, 2022, 63, 0022-2488, 082701, 10.1063/5.0070586 | |
10. | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Fast and slow clustering dynamics of Cucker–Smale ensemble with internal oscillatory phases, 2023, 33, 0218-2025, 1053, 10.1142/S0218202523500239 |