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Abstract. We present two uniform estimates on stability and mean-field limit

for the “augmented Kuramoto model (AKM)” arising from the second-order
lifting of the first-order Kuramoto model (KM) for synchronization. In par-

ticular, we address three issues such as synchronization estimate, uniform sta-

bility and mean-field limit which are valid uniformly in time for the AKM.
The derived mean-field equation for the AKM corresponds to the dissipative

Vlasov-McKean type equation. The kinetic Kuramoto equation for distributed
natural frequencies is not compatible with the frequency variance functional
approach for the complete synchronization. In contrast, the kinetic equation

for the AKM has a similar structural similarity with the kinetic Cucker-Smale

equation which admits the Lyapunov functional approach for the variance. We
present sufficient frameworks leading to the uniform stability and mean-field

limit for the AKM.
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1. Introduction. Synchronization of weakly coupled oscillators is ubiquitous in
our nature, e.g., rhythmic heart beatings of pacemaker cells, synchronous flashing
of fireflies and collective hand clapping in a concert hall, etc [1, 6, 34, 35]. After
Huygen’s observation on two pendulum clocks hanging on the same bar, collective
behaviors of weakly coupled oscillators have been reported from time to time in
scientific literature (see [34]). However, major scientific progress on the collective
dynamics of complex systems was initiated by Winfree and Kuramoto about a half
century ago in [26, 27, 41]. Recently, research on the collective dynamics of complex
systems has received lots of attention due to engineering applications in sensor
network, mobile network and control of unmanned aerial vehicles (UAV) etc. In [22],
the authors observed a formal analogy between the Cucker-Smale flocking model
and the Kuramoto model for synchronization, and provide a quantitive estimate
for the synchronization based on Lyapunov functional approach. In the paper, we
further investigate this formal analogy and study dynamic asymptotic properties of
the AKM.

Consider an ensemble of Kuramoto oscillators lying on the nodes of the complete
graph with N -nodes, and assume that the state of an oscillator is described by
a real-valued function “phase”. Let θi be the phase of the i-th oscillator whose
dynamics is given by the Kuramoto model:

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi), 1 ≤ i ≤ N, (1)

where κ and νi denote the coupling strength, and the natural frequency of the i-th
Kuramoto oscillator, respectively. On the other hand, it is well known in [28] that
the dynamics of system (1) with N � 1 can be described by the corresponding
mean-field equation, namely kinetic Kuramoto equation. To be specific, let f =
f(θ, ν, t) be the one-particle distribution function at phase θ, natural frequency ν
at time t. Then, the kinetic Kuramoto equation reads as follows.

∂tf + ∂θ(L[f ]f) = 0, (θ, ν) ∈ T× R, t > 0,

L[f ](θ, ν, t) := ν + κ

∫ 2π

0

∫ ∞
−∞

sin(θ∗ − θ)f(θ∗, ν∗, t)dν∗dθ∗,
(2)

where T denotes the 1-dimensional torus. The Kuramoto model (1) and its corre-
sponding mean-field kinetic equation (2) have been extensively studied in applied
mathematics, control theory and statistical physics communities from various as-
pects, e.g., existence of partial and fully phase-locked states [2, 8, 29, 39], emergence
of complete synchronization [4, 5, 7, 9, 10, 11, 14, 17, 18, 19, 22, 25, 37], stability
of partial and fully phase-locked states and incoherent state [3, 30, 31, 32], slow-
fast dynamics [23], existence of the critical coupling strength and its computing
algorithm for phase-locked states [13, 38], phase-transition phenomena at critical
coupling strength [1], relation with other models [22, 36] and rigorous mean-field
limit [28] etc. For details, we refer to survey articles and a book [1, 12, 20, 34, 35].
Our main concern is to derive complete synchronization estimate for (2). For iden-
tical oscillators with g(ν) = δ0, the kinetic equation (2) can be reduced to

∂tf + ∂θ(L[f ]f) = 0, θ ∈ T, t > 0,

L[f ](θ, t) := κ

∫ 2π

0

sin(θ∗ − θ)f(θ∗, t)dθ∗.
(3)
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In this case, the variance function Λ[f ] :=
∫
T2 |θ− θ∗|2f(θ, t)f(θ∗, t)dθ∗dθ can mea-

sure the emergence of complete (phase) synchronization. However, for distributed
natural frequencies, the functional Λ[f ] cannot be used for the complete synchro-
nization. Then, it is not clear how to derive a complete synchronization estimate
directly for the kinetic equation (2) without lifting corresponding particle results as
in [7]. This motivates the works in this paper.

Next, we briefly explain how to bypass the aforementioned difficulty for the com-
plete synchronization of the kinetic equation (2) for distributed natural frequencies.
Our idea is to lift the first-order model (1) into a second-order model by introducing

an auxiliary frequency variable ωi = θ̇i, i.e., we differentiate the equation (1) with
respect to t and obtain an augmented Kuramoto model (AKM):

θ̇i = ωi, t > 0, 1 ≤ i ≤ N,

ω̇i =
κ

N

N∑
k=1

cos(θk − θi)(ωk − ωi).
(4)

On the other hand, we consider a mean-field limit N → ∞. In this case, we set
f = f(θ, ω, t) to be a probability density function corresponding to (4). Then, a
formal BBGKY Hierarchy argument yields the kinetic equation:

ft + ω∂θf + κ∂ω(L[f ]f) = 0, (θ, ω) ∈ T× R, t > 0,

L[f ](θ, ω, t) :=

∫ 2π

0

∫ ∞
−∞

cos(θ∗ − θ)(ω∗ − ω)f(θ∗, ω∗, t) dθ∗dω∗.
(5)

As an analogy with the kinetic Cucker-Smale model in [16], we can use the frequency
variance functional

Λ1[f ] :=

∫
T2×R2

|ω − ω∗|2f(θ, ω, t)f(θ∗, ω∗, t)dω∗dωdθ∗dθ

to measure the emergence of complete synchronization for (5).
In this paper, we are interested in the following questions for (4) and (5):

• (Q1): Under what conditions, can system (4) exhibit the complete synchro-
nization?

• (Q2): Is the system (4) uniformly `p-stable with respect to initial data?
• (Q3): Can we derive the mean-field kinetic equation (5) from the particle

model (4) as N →∞ uniformly in time?

The first two questions might be generalized to the locally coupled Kuramoto
model on a general symmetric and connected networks. However, the last question,
i.e., uniform mean-field limit can be treated only for mean-field couplings (e.g.,
BBGKY hierarchy arguments break down for the locally coupled case). As afore-
mentioned, since our main motivation is to study the complete synchronization of
the kinetic level in a direct manner, we consider only the complete network case.

The main results of this paper are four-fold: First, we provide a sufficient frame-
work for the complete synchronization estimate. Our sufficient conditions are ex-
pressed in terms of the coupling strength κ, the diameter of the set of natural
frequencies and initial data, and they are free of the number of oscillators (see The-
orem 3.2). Second, we provide the uniform stability estimate of (4) with respect to
initial data in a metric equivalent to the `p-distance in phase space. Our uniform
stability roughly says that the `p-distance between two configurations at time t is
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uniformly bounded by the constant multiple of initial `p-distance between two ini-
tial data (see Theorem 4.3). Third, we present a uniform-in-time mean-field limit
for (4) as a direct application of the exponential flocking estimate in Theorem 3.2
and uniform-in-time stability estimates in Theorem 4.3. Our last result is to derive
the complete synchronization estimate for the mean-field kinetic equation (5) using
a robust Lyapunov functional approach.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
theoretical minimum for the Kuramoto model and its augmented model. In Section
3, we present a synchronization estimate for the AKM (4). In Section 4, we present
a uniform `p-stability estimate for the augmented model. In Section 5, we study the
uniform mean-field limit from the particle model (4) to the corresponding kinetic
equation uniformly in time, and we also study the complete frequency synchroniza-
tion estimate for the kinetic equation. In Section 6, we provide a synchronization
estimate for the kinetic Kuramoto equation (5) with distributed natural frequencies.
Finally, Section 7 is devoted to a brief summary of our main results and discussion
for future works.

Before we proceed to the next section, we introduce the notation which will be
used in the rest of the paper.

Notation. When we discuss the distance in the spatial dimension T, we use the
orthodromic distance: let θ be a constant in R, then we define

|θ|o := |θ̄| where θ̄ ∈ (−π, π] and θ ≡ θ̄ (mod 2π).

In the following discussion, we only consider the case in which the oscillators are
confined in a half circle. It is obvious that

|θ|o = |θ| for θ ∈ (−π, π).

For notational simplicity, we use |·| instead of |·|o for the spatial distance. Through-
out the paper, we use the following simplified notation: for Z := (z1, · · · , zN ), we
set

D(Z) := max
1≤i,j≤N

|zi − zj |,

‖Z‖p :=
( N∑
i=1

|zi|p
) 1
p

, p ∈ [1,∞),

‖Z‖∞ := max
1≤i≤N

|zi|,

and

Θ := (θ1, · · · , θN ), Ω := (ω1, · · · , ωN ), V := (ν1, · · · , νN ).

2. Preliminaries. In this section, we briefly review a theoretical minimum for the
Kuramoto model and the augmented Kuramoto model.

2.1. The Kuramoto model. In this subsection, we briefly discuss an associated
conservation law, and review the state-of-the-art results on the complete synchro-
nization for the Kuramoto model. First, we introduce a time-dependent quantity
C(Θ,V, t):

C(Θ,V, t) :=

N∑
i=1

θi − t
N∑
i=1

νi.
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Lemma 2.1. Let Θ = Θ(t) be a phase vector whose dynamics is governed by (1).
Then, the quantity C(Θ,V, t) is a constant of motion.

d

dt
C(Θ(t),V, t) = 0, t > 0.

Proof. Let Θ = Θ(t) be a Kuramoto flow. Then, we have

d

dt
C(Θ(t),V, t) =

d

dt

( N∑
i=1

θi − t
N∑
i=1

νi

)
=

N∑
i=1

θ̇i −
N∑
i=1

νi = 0.

This yields the desired estimate.

Remark 1. Note that unless
∑N
i=1 νi is zero, the total phase

∑N
i=1 θi is not con-

served.

Next, we discuss the equilibrium for the Kuramoto model (1). Note that the
equilibrium solution Θ = (θ1, · · · , θN ) is a solution to the following equilibrium
system:

νi +
κ

N

N∑
k=1

sin(θk − θi) = 0, 1 ≤ i ≤ N. (6)

We sum up the equation (6) with respect to i to obtain

0 =

N∑
i=1

νi +
κ

N

N∑
i,k=1

sin(θk − θi) =

N∑
i=1

νi.

Thus, if the system (6) does have a solution, then the total sum of natural frequen-

cies is zero. Hence if
∑N
i=1 νi 6= 0, then system (6) does not have a solution. This

leads to the need of the relaxed equilibria in the following definition. We first recall
several definitions for a phase-locked state and asymptotic phase-locking.

Definition 2.2. [1, 12, 19] Let Θ(t) = (θ1(t), · · · , θN (t)) be a time-dependent phase
vector.

1. Θ is a phase-locked state if all relative phase differences are constants:

θi(t)− θj(t) = θi(0)− θj(0), t ≥ 0, 1 ≤ i, j ≤ N.
2. Θ exhibits asymptotic phase-locking (complete synchronization) if the relative

frequencies tend to zero asymptotically:

lim
t→∞

|θ̇i(t)− θ̇j(t)| = 0, 1 ≤ i, j ≤ N.

Remark 2. Note that solutions to the following equilibrium system:

νi +
κ

N

N∑
j=1

sin(θj − θi) = 0, i = 1, · · · , N,
N∑
i=1

νi = 0

correspond to phase-locked states of (1).

We next briefly review the state-of-the-art result for the Kuramoto model (1). It
is well known in [11, 24, 36] that system (1) can be lifted as a dynamical system on
RN and can also be written as a gradient flow with an analytical potential in RN :

Θ̇(t) = −∇ΘV (Θ), where V (Θ) := −
N∑
k=1

νkθk +
κ

2N

∑
1≤k,l≤N

(1− cos(θk − θl)).
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For a gradient flow system with analytical potential, uniform boundedness is equiv-
alent to the convergence of solution toward the phase-locked state. As a dynamical
system in RN , the uniform boundedness of (1) in RN in a rotating frame moving
with the speed of average of natural frequencies is not obvious since nonidentical
oscillators can cross each other.

In the following theorem, we summarize the state-of-the-art results for the emer-
gence of phase-locked states from generic initial data in a large coupling strength
regime with κ� 1.

Theorem 2.3. [9, 11, 13, 19] The following assertions hold.

1. Suppose that the initial phase configuration Θ0 is confined in a half circle and
the coupling strength κ is positive such that

D(Θ0) < π, κ > 0, D(V) = 0.

Then, for any solution Θ = Θ(t) to (1), we have

lim
t→∞

D(Θ̇(t)) = 0.

2. Suppose that the initial phase configuration Θ0 is confined in a half circle and
the coupling strength κ is sufficient large such that

D(Θ0) < π, κ > D(V) > 0.

Then, for any solution Θ = Θ(t) to (1), there exists a positive constant λ such
that

D(Θ̇(t)) ≤ Ce−λt, as t→∞.

3. Suppose that natural frequencies are distributed and initial configurations sat-
isfy

D(V) > 0, R0 =
1

N

∣∣∣ N∑
k=1

eiθ0k

∣∣∣ > 0, θ0
j 6= θ0

k, 1 ≤ j 6= k ≤ N.

Then there exists a large coupling strength κ∞ > 0 such that if κ ≥ κ∞ there
exists a phase-locked state Θ∞ such that the solution with initial data Θ0

satisfies

lim
t→∞

‖Θ(t)−Θ∞‖∞ = 0,

where the norm ‖ · ‖∞ is the standard `∞-norm in RN .

Remark 3. 1. In the course of the proof for the first statement, we can show that
there exists a finite time t0 and D∞ ∈ (0, π2 ) such that

D(Θ(t)) ≤ D∞, for t ≥ t0.

2. The result of [11] does not yield detailed asymptotic dynamics of identical Ku-
ramoto oscillators. However, when the diameter of the emergent phase-locked state
is less than π and the coupling strength is sufficiently large, then we can show that
convergence speed is at least exponential. See [9, 12, 13] for detailed discussion.
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2.2. The augmented Kuramoto model. In this subsection, we discuss basic
structural properties of the AKM and relationship between the Kuramoto model
and AKM. We set averaged quantities and fluctuations of phase and frequency
around them:

θc :=
1

N

N∑
k=1

θk, ωc :=
1

N

N∑
k=1

ωk,

θ̂i := θi − θc, ω̂i := ωi − ωc.
Then, it is easy to see that the averaged quantities and fluctuations satisfy

θ̇c = ωc, ˙̂ωi =
κ

N

N∑
k=1

cos(θ̂k − θ̂i)(ω̂k − ω̂i). (7)

Lemma 2.4. Let {(θi, ωi)}Ni=1 be a solution to (4). Then, the averaged quantities
(θc, ωc) satisfy the following relations:

ωc(t) = ωc(0), θc(t) = θc(0) + tωc(0), t ≥ 0.

Proof. We sum (4) with respect to i and use the skew symmetry of cos(θj−θi)(ωj−
ωi) in the transformation of (i, j) ⇐⇒ (j, i) to get

d

dt

N∑
i=1

ωi =
κ

N

N∑
i,k=1

cos(θk − θi)(ωk − ωi) = − κ

N

N∑
i,k=1

cos(θk − θi)(ωk − ωi) = 0.

The second relation follows from (7)1.

Next, we discuss the relation between the first-order model (1) and the second-
order model (4) which is stated in the following theorem.

Theorem 2.5. The Kuramoto model (1) is equivalent to the augmented Kuramoto
model (4) in the following sense.

1. If {θi} is a solution to (1) with initial data {θ0
i }, then {(θi, ωi := θ̇i)} is a

solution to (4) with well-prepared initial data {(θ0
i , ω

0
i )}:

ω0
i := νi +

κ

N

N∑
j=1

sin(θ0
j − θ0

i ), i = 1, · · · , N.

2. If {(θi, ωi)} is a solution to (4) with initial data {(θ0
i , ω

0
i )}, then {θi} is a

solution to (1) with natural frequencies:

νi := ω0
i −

κ

N

N∑
j=1

sin(θ0
j − θ0

i ), i = 1, · · · , N.

Proof. (i) Let Θ = Θ(t) be a solution to (1) with initial data Θ0. Then, it satisfies

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi). (8)

We set
ωi = θ̇i (9)

and differentiate the above equation to obtain

ω̇i =
κ

N

N∑
k=1

cos(θk − θi)(ωk − ωi). (10)
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We use (8) to find

ωi = νi +
κ

N

N∑
k=1

sin(θk − θi). (11)

Letting t→ 0+ in (11), we obtain

ω0
i = νi +

κ

N

N∑
k=1

sin(θ0
k − θ0

i ). (12)

Finally, we combine (9), (10) and (12) to see that (θi, ωi) is a solution to (4) with
initial data (θ0

i , ω
0
i ).

(ii) Let {(θi, ωi)} be a solution to (4) with initial data {(θ0
i , ω

0
i )}, i.e., it satisfies

ω̇i =
κ

N

N∑
k=1

cos(θk − θi)(ωk − ωi).

Then, we use the relations:

ωi = θ̇i and cos(θk − θi)(ωk − ωi) =
d

dt
sin(θk − θi)

to integrate (10) to obtain

θ̇i = ωi = ω0
i −

κ

N

N∑
k=1

sin(θ0
k − θ0

i ) +
κ

N

N∑
k=1

sin(θk − θi). (13)

Then, we set

νi := ω0
i −

κ

N

N∑
k=1

sin(θ0
k − θ0

i ). (14)

Finally, we combine (13) and (14) to recover the Kuramoto model.

Before we close this section, we quote the following lemma to be crucially used
in later sections.

Lemma 2.6. [21] Suppose that two nonnegative Lipschitz functions X and V satisfy
the system of differential inequalities:∣∣∣dX

dt

∣∣∣ ≤ V, dV

dt
≤ −αV + γe−αtX, a.e. t > 0,

where α and γ are positive constants. Then, X and V satisfy the uniform bound
and decay estimates:

X(t) ≤ 2M

α
(X(0) + V (0)), V (t) ≤M(X(0) + V (0))e−

αt
2 , t ≥ 0,

where M is a positive constant defined by,

M := max
{

1,
2γ

αe

}
+

8γ

α3e3
.

3. Emergence of the complete synchronization. In this section, we present
complete synchronization estimates for the AKM (4) in `∞ and `p, p ∈ [1,∞)
frameworks by deriving a system of Grönwall’s inequalities.
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3.1. `∞-framework. In this subsection, we present a synchronization estimate in
`∞-framework. In each case, the synchronization estimates are obtained in the
following three steps:

• Step A (Existence of positively invariant set). We identify a positively invari-
ant set which is translation invariant in phase space.

• Step B (Derivation of Grönwall’s inequality). We introduce a Lyapunov type
functional and derive a Grönwall type differential inequality.

• Step C (Complete synchronization estimate). Once we derive a Grönwall type
inequality for a suitable Lyapunov functional, suitable Grönwall’s lemma and
continuity arguments yield the desired synchronization estimate.

As candidates for Lyapunov functionals and an invariant set, we introduce phase
and frequency diameters:

D(Θ) := max
1≤i,j≤N

|θi − θj |, D(Ω) := max
1≤i,j≤N

|ωi − ωj |,

and for D∞ < π
2 , we set

S(D∞) :=
{

Θ = (θ1, · · · , θN ) : D(Θ) < D∞
}
.

Lemma 3.1. Suppose that initial data (Θ0,Ω0) and the coupling strength κ satisfy

Θ0 ∈ S(D∞), κ >
D(Ω0)

cos(D∞)(D∞ −D(Θ0))
, where D∞ <

π

2
.

Then, the set S is positively invariant under the flow (4), i.e., for any solution
Θ = Θ(t) with initial data Θ0 ∈ S, we have

Θ(t) ∈ S(D∞), t ≥ 0.

Proof. Let Θ0 be a initial data with D(Θ0) < D∞. Suppose that S is not positively
invariant under flow. Then, there exists a finite time t∗ such that

t∗ = sup{ t : D(Θ(s)) < D∞, 0 ≤ s ≤ t}.

By the continuity, we have

D(Θ(t∗)) = D∞.

On the other hand, for any indices i and j, we integrate (4)2 from 0 to t for t < t∗

to obtain

ωi(t)− ωj(t) = ω0
i − ω0

j +
κ

N

N∑
k=1

∫ t

0

cos(θk − θi)(ωk(s)− ωi(s)) ds

− κ

N

N∑
k=1

∫ t

0

cos(θk − θj)(ωk(s)− ωj(s)) ds.

Now we choose maximal indices M and m which might be dependent on t:

ωM (t) := max
1≤i≤N

ωi(t), ωm(t) := min
1≤i≤N

ωi(t).
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Then, for t ∈ [0, t∗], we get

D(Θ̇(t)) = ωM (t)− ωm(t)

= ωM (0)− ωm(0) +
κ

N

N∑
k=1

∫ t

0

cos(θk(s)− θM (s))(ωk(s)− ωM (s)) ds

− κ

N

N∑
k=1

∫ t

0

cos(θk(s)− θm(s))(ωk(s)− ωm(s)) ds.

(15)

For 0 ≤ s ≤ t∗, we have

|θk(s)− θM (s)| ≤ D∞, |θk(s)− θm(s)| ≤ D∞. (16)

Therefore, it follows from (15) and (16) that we have

D(Θ̇(t)) ≤ D(Θ̇(0)) +
κ cosD∞

N

N∑
k=1

∫ t

0

(ωk(s)− ωM (s)) ds

− κ cosD∞

N

N∑
k=1

∫ t

0

(ωk(s)− ωm(s)) ds

= D(Θ̇(0))− κ cosD∞
∫ t

0

D(Θ̇(s)) ds.

(17)

This yields

D(Θ̇(t)) ≤ D(Θ̇(0))− κ cosD∞
∫ t

0

D(Θ̇(s)) ds. (18)

We set

u(t) :=

∫ t

0

D(Θ̇(s)) ds.

Then, it is easy to see that

u̇(t) = D(Θ̇(t)), u(0) = 0, u̇(0) = D(Θ̇(0)). (19)

Then, the relation (18) is equivalent to

u̇(t) + κ cosD∞u(t) ≤ u̇(0). (20)

Then, (19) and (20) yield

u(t) ≤ u̇(0)

κ cosD∞

(
1− e−κ(cosD∞)t

)
≤ u̇(0)

κ cosD∞
, t ≥ 0. (21)

On the other hand, since D(Θ(t∗)) = D∞, there exist indices i and j such that

θi(t
∗)− θj(t∗) = D∞.

Then, it follows from (4)1 that we have

D∞ = θi(t
∗)− θj(t∗)

= θ0
i − θ0

j +

∫ t∗

0

(ωi(s)− ωj(s)) ds

≤ D(Θ0) +

∫ t∗

0

D(Θ̇(s)) ds ≤ D(Θ0) +
D(Θ̇(0))

κ cos(D∞)
< D∞,

where we used the hypothesis on κ and (21), which yields contradiction.
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Theorem 3.2. Suppose that initial data and coupling strength satisfy

Θ0 ∈ S(D∞),

N∑
i=1

ω0
i = 0, κ >

D(Ω0)

cos(D∞)(D∞ −D(Θ0))
, where D∞ <

π

2
.

Then, we have an exponential synchronization:

D(Ω(t)) ≤ D(Ω0)e−κ cos(D∞)t, t ≥ 0.

Proof. Due to the conservation law in Lemma 2.4, we have

N∑
i=1

ωi(t) = 0, t ≥ 0.

We set extremal indices M and m such that

ωM := max
1≤i≤N

ωi, ωm := min
1≤i≤N

ωi.

Then, it follows from (4)2 that we have

ω̇M =
κ

N

N∑
k=1

cos(θk − θi)(ωk − ωM ) ≤ −κ cosD∞ωM . (22)

Similarly, we have
ω̇m ≥ −κ cosD∞ωm. (23)

Then, it follows from (22) and (23) that we have

d

dt
D(Θ̇(t)) ≤ −κ cosD∞D(Θ̇), t > 0.

This yields the desired exponential decay estimate.

3.2. `p-framework with p ∈ [1,∞). In this subsection, we present `p-estimate for
(4) for later use. For phase and frequency vectors

Θ = (θ1, · · · , θN ) and Ω = (ω1, · · · , ωN ),

we set ‖Θ‖p and ‖Ω‖p:

‖Θ‖p :=
( N∑
i=1

|θi|p
) 1
p

, ‖Ω‖p :=
( N∑
i=1

|ωi|p
) 1
p

, p ∈ [1,∞).

Proposition 1. Suppose that initial data and coupling strength satisfy

Θ0 ∈ S(D∞),

N∑
i=1

ω0
i = 0, κ >

D(Ω0)

cos(D∞)(D∞ −D(Θ0))
, where D∞ <

π

2
.

Then for any solution {(θi, ωi)}Ni=1 to (4), we have∣∣∣ d
dt
‖Θ‖p

∣∣∣ ≤ ‖Ω‖p, d

dt
‖Ω‖p ≤ −κ cos(D∞)‖Ω‖p, a.e. t > 0. (24)

Proof. (i) Note that
d|θi|
dt
≤ |ωi|.

We multiply by p|θi|p−1 to the above relation, take a sum the resulting relation,
and use Hölder’s inequality to get the following estimate:

d

dt

N∑
i=1

|θi|p ≤ p
N∑
i=1

|θi|p−1|ωi| ≤ p
( N∑
i=1

|θi|p
) p−1

p
( N∑
i=1

|ωi|p
) 1
p ≤ p‖Θ‖p−1

p ‖Ω‖p.
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This yields the desired first differential inequality.
(ii) It follows from (4)2 that we have

|ωi|
d|ωi|
dt

=
1

2

d|ωi|2

dt
=

1

2

dω2
i

dt
= ωi

dωi
dt

=
κ

N

N∑
j=1

cos(θj − θi)ωi(ωj − ωi). (25)

We use (25) to obtain

d‖Ω‖pp
dt

=

N∑
i=1

d

dt
|ωi|p =

N∑
i=1

p|ωi|p−2|ωi|
d

dt
|ωi|

=

N∑
i=1

p|ωi|p−2
[ κ
N

N∑
j=1

cos(θj − θi)ωi(ωj − ωi)
]

=
κp

N

N∑
i=1

N∑
j=1

cos(θj − θi)|ωi|p−2ωi(ωj − ωi)

=
κp

2N

N∑
i=1

N∑
j=1

cos(θj − θi)(ωj − ωi)
(
|ωi|p−2ωi − |ωj |p−2ωj

)
.

(26)

We use the monotonicity of f(x) = |x|p−2x to see

(ωj − ωi)(|ωi|p−2ωi − |ωj |p−2ωj) ≤ 0. (27)

Then, we use (26), (27),
∑
i=1 ωi = 0 and a priori condition:

cos(θj − θi) ≥ cosD∞

to obtain

d‖Ω‖pp
dt

≤ κp cosD∞

2N

N∑
i,j=1

(ωj − ωi)(|ωi|p−2ωi − |ωj |p−2ωj)

= −κp cosD∞
N∑
i=1

|ωi|p = −κp cosD∞‖Ω‖pp.

This yields the desired second differential inequality.

Finally, we combine Proposition 1 and Lemma 3.1 to derive the exponential
synchronization.

Theorem 3.3. Let {(θi, ωi)} be a solution to (4) with initial data and coupling
strength:

Θ0 ∈ S(D∞),

N∑
i=1

ω0
i = 0, κ >

D(Ω0)

cos(D∞)(D∞ −D(Θ0))
, where D∞ <

π

2
.

Then, there exists a positive constant θ∞p such that for p ∈ [1,∞),

‖Ω(t)‖p ≤ ‖Ω0‖pe−κ cos(D∞)t, ‖Θ(t)‖p ≤ θ∞p , t ≥ 0.

Proof. The exponential decay of Ω follows from the second equation of (24). On
the other hand, it follows from (24)1 that we have∣∣∣‖Θ(t)‖p − ‖Θ(0)‖p

∣∣∣ ≤ ∫ t

0

‖Ω(s)‖p ds ≤
‖Ω0‖p

κ cosD∞

(
1− e−κ cos(D∞)t

)
≤ ‖Ω0‖p
κ cosD∞

.
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Thus, we have

‖Θ(t)‖p ≤ ‖Θ0‖p +
‖Ω0‖p

κ cosD∞
=: θ∞p (D∞, κ, ‖Θ0‖p, ‖Ω0‖p).

Thanks to Theorem 3.3, we can conclude that there exists a unique phase-locked
state Θ∞. Moreover, Θ(t) will tend to Θ∞ exponentially.

Corollary 1. Let {(θi, ωi)} be a solution to (4) with initial data {(θ0
i , ω

0
i )} and

coupling strength κ:

Θ0 ∈ S(D∞),

N∑
i=1

ω0
i = 0, κ >

D(Ω0)

cos(D∞)(D∞ −D(Θ0))
, where D∞ <

π

2
.

Then, for any solution {(θi, ωi)}, there exists a unique phase lock state Θ∞ :=
(θ∞1 , · · · , θ∞N ) such that

|θi(t)− θ∞i | ≤ Ce−κ cos(D∞)t, i = 1, · · · , N.

Proof. Let Θ = Θ(t) be a solution to system (4). Then, since κ is sufficiently large,
we have

sup
0≤t<∞

D(Θ(t)) ≤ D∞.

Then, we use Theorem 3.2 to obtain

|θi(t̃)− θi(t)| =
∣∣∣ ∫ t̃

t

ωi(s) ds
∣∣∣ ≤ ∫ t̃

t

|ωi(s)|ds ≤
∫ t̃

t

( N∑
i=1

|ωi(s)|p
)1/p

ds

≤
∫ t̃

t

‖Ω(s)‖p ds ≤ ‖Ω0‖p
∫ t̃

t

e−κ cos(D∞)s ds

≤ ‖Ω0‖p
κ cosD∞

(
e−κ(cosD∞)t − e−κ(cosD∞)t̃

)
.

(28)

Then for any ε > 0, we can find a positive number T such that if t̃ ≥ T and t ≥ T ,
then

|θi(t̃)− θi(t)| < ε.

This immediately implies that there exists a unique asymptotic limit θ∞i . Moreover,
we combine (28) to show that

|θi(t)− θ∞i | ≤ Ce−κ(cosD∞)t.

4. Uniform `p-stability estimate. In this section, we study the uniform `p-
stability for the augmented system (4) with respect to initial data.

Let Z := (Θ,Ω) and Z̃ := (Θ̃, Ω̃) be two solutions to (4) corresponding to

initial data (Θ0,Ω0) and (Θ̃0, Ω̃0), respectively. For the uniform stability estimate,
we introduce a metric which is equivalent to `p-distance: for p ∈ [1,∞) and two

solutions Z = (Θ,Ω) and Z̃ = (Θ̃, Ω̃), we define the distance as

dp(Z(t), Z̃(t)) := ‖Θ(t)− Θ̃(t)‖p + ‖Ω(t)− Ω̃(t)‖p. (29)

Next, we present a uniform `p-stability of system (4) with respect to initial data as
follows.
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Definition 4.1. The system (4) is uniformly `p-stable with respect to initial data

if the following relation holds: For two solutions Z and Z̃ to (4) with initial data

Z0 and Z̃0, respectively, there exists a positive constant G independent of t such
that

dp(Z(t), Z̃(t)) ≤ Gdp(Z0, Z̃0), t ≥ 0.

In the following lemma, we will derive differential inequalities for two subfunc-
tionals ‖Θ(t)− Θ̃(t)‖p and ‖Ω(t)− Ω̃(t)‖p for p ∈ [1,∞).

Lemma 4.2. Let (Θ,Ω) and (Θ̃, Ω̃) be two solutions to (4) corresponding to initial

data (Θ0,Ω0) and (Θ̃0, Ω̃0), respectively. Suppose that initial data and coupling
strength satisfies following conditions:

Θ0 ∈ S(D∞), Θ̃0 ∈ S(D∞),

N∑
i=1

ω0
i = 0 and

N∑
i=1

ω̃0
i = 0,

κ > max
{ D(Ω0)

cos(D∞)(D∞ −D(Θ0))
,

D(Ω̃0)

cos(D∞)(D∞ −D(Θ̃0))

}
.

Then, we have

d

dt
‖Θ− Θ̃‖p ≤ ‖Ω− Ω̃‖p, a.e., t > 0,

d

dt
‖Ω− Ω̃‖p ≤ −κ cos(D∞)‖Ω− Ω̃‖p + 2κ‖Ω̃0‖pe−κ cos(D∞)t‖Θ− Θ̃‖p.

(30)

Proof. • Case A (Derivation of the first inequality (30)1). Note that θi− θ̃i satisfies

d

dt
(θi − θ̃i) = ωi − ω̃i.

This yields
d

dt
|θi − θ̃i| ≤ |ωi − ω̃i|.

We multiply by p|θi − θ̃i|p−1 on both sides, sum up the resulting relations with
respect to i and apply Hölder’s inequality to obtain

d

dt

N∑
i=1

|θi − θ̃i|p ≤ p‖Θ− Θ̃‖p−1
p ‖Ω− Ω̃‖p.

This implies the desired estimate.

• Case B (Derivation of the first inequality (30)2). Note that ωi − ω̃i satisfies

d

dt
(ωi − ω̃i) =

κ

N

N∑
k=1

[
cos(θk − θi)(ωk − ωi)− cos(θ̃k − θ̃i)(ω̃k − ω̃i)

]
=

κ

N

N∑
k=1

cos(θk − θi)
[
(ωk − ωi)− (ω̃k − ω̃i)

]
+
κ

N

N∑
k=1

[
cos(θk − θi)− cos(θ̃k − θ̃i)

]
(ω̃k − ω̃i)

=
κ

N

N∑
k=1

cos(θk − θi)
[
(ωk − ω̃k)− (ωi − ω̃i)

]
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− κ

N

N∑
k=1

sin θ∗ik

[
(θk − θi)− (θ̃k − θ̃i)

]
(ω̃k − ω̃i). (31)

where θ∗ik is located between (θk − θi) and (θ̃k − θ̃i) by mean value theorem. By
multiplying (ωi − ω̃i) on both sides of (31), we have

|ωi − ω̃i|
d

dt
|ωi − ω̃i| = (ωi − ω̃i)

d

dt
(ωi − ω̃i)

=
κ

N

N∑
k=1

cos(θk − θi)(ωi − ω̃i)
[
(ωk − ω̃k)− (ωi − ω̃i)

]
− κ

N

N∑
k=1

sin θ∗ik

[
(θk − θ̃k)− (θi − θ̃i)

]
(ωi − ω̃i)(ω̃k − ω̃i).

≤ κ

N

N∑
k=1

cos(θk − θi)(ωi − ω̃i)
[
(ωk − ω̃k)− (ωi − ω̃i)

]
+
κ

N

N∑
k=1

[
|θk − θ̃k|+ |θi − θ̃i|

]
|ωi − ω̃i||ω̃k − ω̃i|.

(32)

We use (32) and similar argument used in Proposition 1 to obtain

d

dt
‖Ω− Ω̃‖pp =

N∑
i=1

d

dt
|ωi − ω̃i|p

=

N∑
i=1

p|ωi − ω̃i|p−2|ωi − ω̃i|
d

dt
|ωi − ω̃i|

≤ κp

N

∑
i,k

cos(θk − θi)|ωi − ω̃i|p−2(ωi − ω̃i)
[
(ωk − ω̃k)− (ωi − ω̃i)

]
+
κp

N

∑
i,k

(
|θk − θ̃k|+ |θi − θ̃i|

)
|ωi − ω̃i|p−1|ω̃k − ω̃i|

(33)

By Hölder’s inequality, we have∑
i,k

|θk − θ̃k||ωi − ω̃i|p−1|ω̃k − ω̃i| ≤
(∑
i,k

|ωi − ω̃i|p
) p−1

p
(∑
i,k

|θk − θ̃k|p|ω̃k − ω̃i|p
) 1
p

≤ ND(Ω̃)‖Θ− Θ̃‖p‖Ω− Ω̃‖p−1
p

and similarly∑
i,k

|ωi − ω̃i|p−1|θi − θ̃i||ω̃k − ω̃i| ≤ ND(Ω̃)‖Ω− Ω̃‖p−1
p ‖Θ− Θ̃‖p.

Then, by using these estimation and relation (33), we obtain

d

dt
‖Ω− Ω̃‖pp ≤ −κp cos(D∞)‖Ω− Ω̃‖pp + 2κpD(Ω̃)‖Θ− Θ̃‖p‖Ω− Ω̃‖p−1

p .

By applying the relation D(Ω̃) ≤ ‖Ω̃‖p and Theorem 3.3, we attain the desired
result.
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We combine Lemma 2.6 and Lemma 4.2 to obtain the uniform `p-stability.

Theorem 4.3. Suppose that initial data and coupling strength satisfy the following
relations:

Θ0 ∈ S(D∞), Θ̃0 ∈ S(D∞),

N∑
i=1

ω0
i = 0 and

N∑
i=1

ω̃0
i = 0,

κ > max
{ D(Ω0)

cos(D∞)(D∞ −D(Θ0))
,

D(Ω̃0)

cos(D∞)(D∞ −D(Θ̃0))

}
.

Then, for any two solutions (Θ,Ω) and (Θ̃, Ω̃), we have uniform `p-stability estimate
(29).

As a direct application of Theorem 4.3, we have the following corollary for the
first-order Kuramoto model (1).

Corollary 2. Suppose that initial data and coupling strength κ satisfy the following
relations:

Θ0 ∈ S(D∞), Θ̃0 ∈ S(D∞),

N∑
i=1

νi = 0,

N∑
i=1

ν̃i = 0,

κ > max
{ D(Ω0)

cos(D∞)(D∞ −D(Θ0))
,

D(Ω̃0)

cos(D∞)(D∞ −D(Θ̃0))

}
.

Then, for any two solutions Θ and Θ̃ to (1) with natural frequency V := (νi) and

Ṽ := (ν̃i) respectively, there exists a positive constant C independent of t such that

‖Θ(t)− Θ̃(t)‖p ≤ C
[
‖Θ0 − Θ̃0‖p + ‖V − Ṽ‖p

]
, t ≥ 0.

Proof. Let Θ and Θ̃ be phase processes for (1) corresponding to the following initial
data and natural frequencies, respectively:

(θ0
1, · · · , θ0

N ), (ν1, · · · , νN ); (θ̃0
1, · · · , θ̃0

N ), (ν̃1, · · · , ν̃N ). (34)

On the other hand, we also set initial frequencies:

ω0
i := νi +

κ

N

N∑
j=1

sin(θ0
j − θ0

i ),

ω̃0
i := ν̃i +

κ

N

N∑
j=1

sin(θ̃0
j − θ̃0

i ).

(35)

Then, we solve the second-order system (4) with initial data (34) and (35). It
follows from the equivalence relation between KM (1) and AKM (4) in Theorem 2.5
and Theorem 4.3 that we have

‖Θ(t)− Θ̃(t)‖p ≤ C
[
‖Θ0 − Θ̃0‖p + ‖Ω0 − Ω̃0‖p

]
, (36)

where Ω0 = (ω0
1 , · · · , ω0

N ). We again use the relations (35) to find

|ω0
i − ω̃0

i | ≤ |νi − ν̃i|+
κ

N

N∑
j=1

| sin(θ0
j − θ0

i )− sin(θ̃0
j − θ̃0

i )|

≤ |νi − ν̃i|+
κ

N

N∑
j=1

(
|θ0
j − θ̃0

j |+ |θ0
i − θ̃0

i |
)
.
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This yields

‖Ω0 − Ω̃0‖p ≤ C
[
‖Θ0 − Θ̃0‖p + ‖V − Ṽ‖p

]
. (37)

Finally, we combine (36) and (37) to obtain the desired stability estimate.

5. Uniform mean-field limit from the AKM to kinetic equation. In this
section, we present the uniform mean-field limit for the AKM in a measure theoretic
framework. The limiting mean-field kinetic equation can be formally derived from
the particle model (4) via the formal procedure of BBGKY hierarchy, and it can
be rigorously justified using the standard empirical measure approximations and
local-in-time stability estimates in Monge-Kantorovich distance which is equivalent
to Wasserstein-1 distance in any finite time.

The formal BBGKY hierarchy procedure yields a formal mean-field limit of sys-
tem (4) toward the mean-field kinetic equation as N → ∞. More precisely, let
f = f(θ, ω, t) be the one-particle distribution function. Then, the kinetic equation
reads as follows.

ft + ω∂θf + ∂ω(L[f ]f) = 0, (θ, ω) ∈ T× R, t > 0,

L[f ](θ, ω, t) := κ

∫ 2π

0

∫ ∞
−∞

cos(θ∗ − θ)(ω∗ − ω)f(θ∗, ω∗, t) dθ∗dω∗.
(38)

Recall that our main purpose of this section is to justify the rigorous transition
from (4) to (38) in the mean-field limit (N →∞).

5.1. A measure theoretic framework. In this subsection, we briefly discuss
some framework which embodies (4) and (38) in a common framework. For this,
we first review concept of measure-valued solutions to (38).

Let P(T×R) be the set of all Radon probability measures with compact support
on the phase space T × R, which can be understood as normalized nonnegative
bounded linear functionals on C0(T×R). For a probability measure µ ∈ P(T×R),
we use a standard duality relation:

〈µ, f〉 =

∫
T×R

f(θ, ω) dµ(θ, ω), f ∈ C0(T× R).

Next, we recall several definitions to be used later.

Definition 5.1. [7] For T ∈ [0,∞), let µt ∈ L∞([0, T );P(T × R)) be a measure-
valued solution to (38) with initial data µ0 ∈ P(T × R) if the following three
assertions hold:

1. Total mass is normalized: 〈µt, 1〉 = 1.
2. µ is weakly continuous in t:

〈µt, f〉 is continuous in t ∀ f ∈ C1
0 (T× R× [0, T )).

3. µ satisfies the equation (38) in a weak sense: for ∀ ϕ ∈ C1
0 (T× R× [0, T )),

〈µt, ϕ(·, ·, t)〉 − 〈µ0, ϕ(·, ·, 0)〉 =

∫ t

0

〈µs, ∂sϕ+ ω∂θϕ+ L[µs]∂ωϕ〉 ds,

Remark 4. Note that for a solution {(θi, ωi)} to (4), the empirical measure

µNt :=
1

N

N∑
i=1

δθi ⊗ δωi ,
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is a measure-valued solution in the sense of Definition 5.1 to (38). Thus, ODE
solution to (4) can be understood as a measure-valued solution for (38). Likewise,
the classical solution for the kinetic AKM model (38) is also a measure-valued
solution as well. Thus, we can treat the particle and kinetic AKM models in the
same framework.

We now discuss how to measure the distance between the solutions of (4) and (38)
by equipping a metric to the probability measure space P(T×R), and the concept
of local-in-time mean-field limit. In fact, we can endow Wasserstein-p distance Wp

in the probability space P(T× R).

Definition 5.2. [33, 40]

1. For p ∈ Z+, let Pp(T × R) be a collection of all probability measures with
finite pth moment: for some z0 ∈ T× R

〈µ, ‖z − z0‖pp〉 < +∞.

Then, Wasserstein p-distance Wp(µ, ν) is defined for any µ, ν ∈ Pp(T× R) as

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
T2×R2

‖z − z∗‖pp dγ(z, z∗)
) 1
p

,

where Γ(µ, ν) denotes the collection of all probability measures on T2 × R2

with marginals µ and ν.
2. If lim

p→∞
Wp exists, then we define W∞ metric as the limit.

3. For any T ∈ (0,∞], the kinetic equation (38) is derivable from the particle
model (4) in [0, T ), or equivalent to say the mean-field limit from the particle
system (4) to the kinetic equation (38), which is valid in [0, T ), if for every
solution µt of the kinetic equation (38) with initial data µ0, the following
condition holds: for some p ∈ [1,∞) and t ∈ [0, T ),

lim
N→+∞

Wp(µ
N
0 , µ0) = 0 ⇐⇒ lim

N→+∞
Wp(µ

N
t , µt) = 0,

where µNt is a measure valued solution of the particle system (4) with initial
data µN0 .

For later use, we quote two results on the approximation of a measure by empir-
ical measures and mean-field limit in any finite time interval without proofs.

Proposition 2. [40] For any given p ∈ [1,∞) and µ ∈ Pp(T × R) with compact
support, there exists a sequence of empirical measures µN ∈ Pp(T× R) such that

µN has a common compact support with µ and lim
N→+∞

Wp(µ
N , µ) = 0.

Remark 5. The construction of the approximation can be followed by the method

of Theorem 6.18 in the book [40] by finding a sequence of atomic measures
∑N
j=1 ajδj

with rational numbers aj such that

N∑
j=1

aj = 1.

5.2. A uniform mean-field limit. In this subsection, we present a uniform mean-
field limit to the kinetic equation (38). We basically follow the approach given in
[21], Corollary 1 and Lemma 3.2.
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Theorem 5.3. Suppose that the initial probability measure µ0 ∈ P(T × R) and
coupling strength satisfy

Dµ0

Θ ≤ D∞ <
π

2
,

∫
T×R

ω µ0(dθ, dω) = 0,

∫
T×R

µ0 (dθ, dω) ≤ m0,∫
T×R

(|θ|p + |ω|p)µ0(dθ, dω) ≤ m2, κ >
Dµ0
ω

cos(D∞)(D∞ −Dµ0

Θ )
,

(39)

where Dµ0

Θ and Dµ0
ω are diameters of the projected supports of µ0 in θ and ω-spaces.

Then, the following assertions hold: for p ∈ [1,∞),

1. There exists a unique measure-valued solution µt ∈ L∞ ([0,∞);P(T× R)) to
(38) with initial data µ0 such that µt is approximated by empirical measure
µNt in Wasserstein-p distance uniformly in time:

lim
N→+∞

sup
t∈[0,+∞)

Wp(µ
N
t , µt) = 0.

2. Suppose that νt is the measure-valued solution to (38) with initial measure ν0

which has the same property in (39). Then there exists nonnegative constant
G independent of t such that

Wp(µt, νt) ≤ GWp(µ0, ν0), t ∈ [0,∞).

Proof. Since the overall proof of Theorem 5.3 is almost the same as that of Corollary
1.1 in [21], we will provide only sketch of the proof.

• Step A (Extraction of Cauchy approximation for µ0 in Wp). We take a sequence
of empirical measures µN0 that approximate µ0 satisfying

lim
N→+∞

Wp(µ
N
0 , µ0) = 0. (40)

The existence of such approximation is guaranteed by [40]. Then, owing to (40),
for any ε > 0, there exists a positive integer N = N(ε) such that

Wp(µ
n
0 , µ

m
0 ) < ε, for n,m > N(ε).

• Step B (Approximation of Wp(µ
n
0 , µ

m
0 )). Using the argument used in the proof of

the Corollary 1.1 in [21], we can find a natural number Mmn such that∣∣∣∣∣W p
p (µn0 , µ

m
0 )− 1

Mmn

Mmn∑
k=1

‖zk0 − z̄k0‖pp

∣∣∣∣∣ ≤ εp, (41)

where, zk0 := (θk0, ωk0) and z̄k0 := (θ̄k0, ω̄k0) are support of initial approximated
empirical measures µn0 and µm0 respectively.

• Step C (Lifting the information at time s = 0 to s = t > 0). Now, using (41)
and the previous `p-stability in particle level, Theorem 4.3, we can directly estimate
Wp(µ

n
t , µ

m
t ) as

W p
p (µnt , µ

m
t ) ≤ 2p−1Gp(W p

p (µn0 , µ
m
0 ) + εp) ≤ 2pGpεp. (42)

which implies that the sequence µnt is Cauchy in Wp-metric. Thus, we can find a
limit measure µt. We next apply similar arguments in [15] and show that the limit
measure µt is the unique measure-valued solution of the kinetic equation (38) with
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initial data µ0. Moreover, because of the estimate (42), we can conclude that for
any ε, there exists a positive constant L, such that

sup
t∈[0,+∞)

Wp(µ
n
t , µt) ≤ 4Gε, for n > L.

This yields

lim
N→+∞

sup
t∈[0,+∞)

Wp(µ
N
t , µt) = 0. (43)

The uniform compact support of µt follows this uniform convergence.

• Step D (Uniform stability of kinetic equation). For measures µ0 and ν0 in P(T×R),
let µ and ν be measure-valued solutions to (38). Then, it follows from (43) that for
any ε� 1, there exists N0(ε) ∈ N such that

Wp(µ, µ
n) <

ε

2
, Wp(ν

n, ν) <
ε

2
and n ≥ N0(ε).

Then, we use the above estimates and (42) to obtain

W p
p (µt, νt) ≤

(
Wp(µt, µ

n
t ) +Wp(µ

n
t , ν

n
t ) +Wp(ν

n
t , νt)

)p
≤
(
ε+Wp(µ

n
t , ν

n
t )
)p

≤ 2p−1
(
εp +W p

p (µnt , ν
n
t )
)

≤ 2p−1
(

2εp +GpW p
p (µn0 , ν

n
0 )
)
.

Letting n→∞, we have

W p
p (µt, νt) ≤ 2pεp + 2p−1GpW p

p (µ0, ν0).

Since ε was arbitrary, we have the uniform Wp-stability:

Wp(µt, νt) ≤ 2
p−1
p GWp(µ0, ν0), t ≥ 0.

Remark 6. The same arguments can be applied for the mean-field limit for the
Kuramoto model to the corresponding kinetic equation uniform in time in the class
of synchronizing solutions in the next section.

As a direct application of Theorem 5.3, we have the following synchronization
estimate for the measure-valued solutions to (38).

Corollary 3. Suppose that the assumptions (39) hold, and let µt be a measure-
valued solution to (38) whose existence is guaranteed by Theorem 5.3. Then, we
have the complete frequency synchronization:(∫

T×R
|ω|p dµt

) 1
p ≤ Ce−κ(cosD∞)t

(∫
T×R
|ω|p dµ0

) 1
p

.

Proof. Let µNt be a sequence of empirical measures appearing in the course of the
proof of Theorem 3.2. Then, it follows from Theorem 3.2 that we have(∫

R2d

|ω|p dµNt
) 1
p ≤ e−κ(cosD∞)t

(∫
R2d

|ω|p dµN0
) 1
p

. (44)
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On the other hand, since µNt has a common compact support, we can view ‖V‖pp as
a test function. Then, due to Theorem 5.3, we have,

lim
N→0

Wp(µ
N
t , µt) = 0.

This implies the weak convergence of µNt to µt. Thus, we can pass to the limit
N →∞ to (44) to obtain(∫

R2d

|ω|p dµt
) 1
p ≤ e−κ(cosD∞)t

(∫
R2d

|ω|p dµ0

) 1
p

.

5.3. Complete synchronization estimate. In this subsection, we present an
alternative approach for the complete synchronization estimate for (38) introduced
in previous subsection. As mentioned in abstract, the kinetic equation (38) for
the AKM is more suitable for the Lyapunov functional approach, compared to the
kinetic Kuramoto equation for the KM with distributed natural frequencies. For
simplicity of presentation, we suppress t-dependence in f :

f(θ, ω) := f(θ, ω, t), θ ∈ [0, 2π], ω ∈ R.

Lemma 5.4. Let f be a classical solution of (38) whose support is compact. Then,
we have

d

dt

∫ 2π

0

∫ ∞
−∞

f dωdθ = 0,
d

dt

∫ 2π

0

∫ ∞
−∞

ωf dωdθ = 0, t > 0.

Proof. It directly comes from multiplying by 1 and ω to (38) and integrating the
resulting relation over the phase and frequency space, hence we omit the detailed
calculation.

Next, we discuss the derivation of the complete (frequency) synchronization es-
timate. For this, we use the Lyapunov functional defined as follows.

Λ[f(t)] :=

∫ 2π

0

∫ ∞
−∞
|ω − ωc|2f(θ, ω) dωdθ, ωc :=

∫ 2π

0

∫
R ωf dωdθ∫ 2π

0

∫
R f dωdθ

, (45)

where ωc is the mean frequency which is constant due to Lemma 5.4.
If complete synchronization occurs, it is natural to expect that frequency will

converge to ωc, i.e., the Lyapunov functional Λ(f) converges to 0. To show this, we
will use the standard Lyapunov functional estimate on Λ(f).

Theorem 5.5. Let f be a classical solution of (38) whose support is compact and
initial datum f0 satisfying

D0
Θ ≤ D∞ <

π

2
,

where D0
Θ is the diameter of support of f0 projected to θ-space. Then, if the coupling

strength κ is large enough, the Lyapunov functional Λ[f ] decays exponentially:

Λ[f(t)] ≤ Λ[f0]e−2κ(cosD∞)‖f0‖L1 t, as t→∞.

Proof. It follows from Lemma 3.1 and condition for support of initial data that we
have

DΘ(t) ≤ D∞ <
π

2
,
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where DΘ(t) is the diameter of support of f(·, ·, t). Now we use (45) and use the
periodicity of f in θ-variable to obtain

d

dt
Λ[f ] =

∫ 2π

0

∫
R

(ω − ωc)2∂tf dωdθ

= −
∫ 2π

0

∫
R

(ω − ωc)2ω∂θf dωdθ −
∫ 2π

0

∫
R

(ω − ωc)2∂ω(L[f ]f) dωdθ

=

∫ 2π

0

∫
R

2(ω − ωc)(L[f ]f) dωdθ

= 2κ

∫
[0,2π]2×R2

cos(θ∗ − θ)(ω − ωc)(ω∗ − ω)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

= 2κ

∫
[0,2π]2×R2

cos(θ∗ − θ)ω(ω∗ − ω)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

− 2κ

∫
[0,2π]2×R2

cos(θ∗ − θ)ωc(ω∗ − ω)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

=: I1 + I2.

Next, we estimate the terms Ii separately.

• (estimate of I1). By interchanging ω and ω∗, we obtain

I1 = 2κ

∫
[0,2π]2×R2

cos(θ∗ − θ)ω(ω∗ − ω)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

= −κ
∫

[0,2π]2×R2

cos(θ∗ − θ)(ω∗ − ω)2f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

≤ −κ cosD∞
∫

[0,2π]2×R2

((ω∗ − ωc)− (ω − ωc))2f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

= −κ cosD∞

∫
[0,2π]2×R2

(ω∗ − ωc)2f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

+ 2κ cosD∞
∫

[0,2π]2×R2

(ω∗ − ωc)(ω − ωc)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

− κ cosD∞
∫

[0,2π]2×R2

(ω − ωc)2f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

= −2κ cosD∞
∫

[0,2π]2×R2

(ω − ωc)2f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗

= −2κ cosD∞‖f0‖L1Λ[f ],

where we use the condition |θ∗ − θ| ≤ D∞ when θ and θ∗ are contained in support
of f(·, ·, t), which is guaranteed by condition on support of initial data.
• (estimate of I2). From the anti-symmetry of integrand, it is easy to see

I2 = −2κωc

∫
[0,2π]2×R2

cos(θ∗ − θ)(ω∗ − ω)f(θ, ω)f(θ∗, ω∗) dθdθ∗dωdω∗ = 0.

From the estimation of Ii, i = 1, 2, we derive following differential inequality

d

dt
Λ[f ] ≤ −2κ cosD∞‖f0‖L1Λ[f ].

By using Grönwall’s lemma, we can obtain the desired exponential decay.
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6. Applications to the kinetic Kuramoto Model. In this section, we study
the uniform mean-field limit of the Kuramoto model and as a direct application of
previous results, we also show the existence of phase-locked states for the kinetic
Kuramoto equation via uniform mean-field limit by lifting particle results to the
kinetic regime. For the local-in-time stability and mean-field limit of the kinetic
Kuramoto equation, we refer to [28].

Let f = f(θ, ν, t) be a one-oscillator probability density function for the ensem-
ble of Kuramoto oscillators. Then, the dynamics of f is governed by the kinetic
Kuramoto equation:

∂tf + ∂θ(v[f ]f) = 0, (θ, ν) ∈ T× R, t > 0,

v[f ](θ, ν, t) = ν + κ

∫ 2π

0

sin(θ∗ − θ)f(θ∗, ν∗, t) dν∗dθ∗.
(46)

Note that the probability density function g = g(ν) for natural frequencies appears
as a ν-marginal density function of f :∫ 2π

0

f(θ, ν, t)dθ = g(ν).

Unlike to (38), it is not clear how to show the emergence of the complete frequency
synchronization for (46) using the nonlinear functional approach as in Section 5.3.
This is why we introduce a second order model (4) and its mean-field limit (38).
Similar to Definition 5.2, we can define the measure valued solution of the kinetic
Kuramoto equation (46).

Definition 6.1. [7] For T ∈ [0,∞), µt ∈ L∞([0, T );P(T×R)) is a measure valued
solution to (46) with initial data µ0 ∈ P(T × R) if the following three assertions
hold:

1. Total mass is normalized: 〈µt, 1〉 = 1.
2. µ is weakly continuous in t:

〈µt, f〉 is continuous in t ∀ f(θ, ν) ∈ C1
0 (T× R× [0, T )).

3. µ satisfies the equation (46) in a weak sense: for ∀ ϕ ∈ C1
0 (T× R× [0, T )),

〈µt, ϕ(·, ·, t)〉 − 〈µ0, ϕ(·, ·, 0)〉 =

∫ t

0

〈µs, ∂sϕ+ v[µ]∂θϕ〉 ds. (47)

Remark 7. As mentioned in Remark 4, both the solution of the original Kuramoto
model (1) and the solution of the kinetic equation (46) can be viewed as a measure
valued solution in the sense of Definition 6.1. Thus, we can apply the Wasser-
stein metric in Definition 5.2 to measure the distance between two measure valued
solutions.

According to Proposition 2 and Remark 5, we have the following result.

Theorem 6.2. Suppose that initial probability measure µ0 ∈ P(T×R) and coupling
strength satisfy

Dµ0

Θ ≤ D
∞ <

π

2
,

∫ 2π

0

ν µ0(dθ, dν) = 0,

∫
T×R

µ0(dθ, dν) ≤ m0,∫
T×R

(|θ|p + |ν|p)µ0(dθ, dν) ≤ m2, κ >
Dµ0
ω

cos(D∞)(D∞ −Dµ0

Θ )
.

(48)

Then, the following assertions hold. For p ∈ [1,∞),
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1. There exists a unique measure-valued solution µt ∈ L∞ ([0,∞);P(T× R)) to
(46) with initial data µ0 such that µt is approximated by empirical measure
µNt in Wasserstein-p distance uniformly in time:

lim
N→+∞

sup
t∈[0,+∞)

Wp(µ
N
t , µt) = 0.

2. Moreover, if µ̃t is the measure-valued solution to (46) with initial measure µ̃0

with compact support and finite moments (48), then there exists nonnegative
constant G independent of t such that

Wp(µt, µ̃t) ≤ GWp(µ0, µ̃0), t ∈ [0,∞).

Proof. The construction of the proof is similar to Theorem 5.3. In fact, as the
distribution of natural frequency ν does not have its own dynamics, i.e., it does not
change in time, thus the variance of ν between µ and µ̃ will be a constant, i.e.,

inf
γ∈Γ(µt,µ̃t)

∫
T2×R2

|ν − ν̄|p γ(ν, ν̄) = inf
γ∈Γ(µ0,µ̃0)

∫
T2×R2

|ν − ν̄|p γ(ν, ν̄).

Therefore, we only need to control the variance on θ. Applying the uniform stability
in Corollary 2, we can construct the uniform mean-field limit and stability for kinetic
Kuramoto model (46) as same as Theorem 5.3.

Now, for large time behavior, we can apply Corollary 1 to the approximate
solution µNt . Notice that the decay rate in Corollary 1 is independent of N . Hence,
the mean-field limit preserves the decay rate, when N tends to infinity.

Corollary 4. (Emergence of a phase-locked state) Suppose that the initial data µ0

and coupling strength satisfy the assumptions (39). Then, there exists a phase-locked
state µ∞ such that

Wp(µt, µ∞) ≤ Ce−KD
∞t, as t→∞.

Proof. It follows from Corollary 1 that for each µNt , we have a unique asymptotic
equilibrium µN∞. Then from the uniform stability in Corollary 2, we can obtain the
sequence {µN∞} is Cauchy, and thus generates a unique limit measure µ∞. Moreover,
it follows from Corollary 1 that we have

Wp(µ
N
t , µ

N
∞) ≤ Ce−κD

∞t.

Notice here the p-th moment of ν would be cancelled because µNt and µN∞ has the
same natural frequency distribution

∫
νµN0 (dθ, dΩ). Now for any ε > 0, we can find

N0 large enough such that, for N ≥ N0 we have

Wp(µt, µ∞) ≤Wp(µt, µ
N
t ) +Wp(µ

N
t , µ

N
∞) +Wp(µ

N
∞, µ∞) ≤ 2ε+ Ce−κD

∞t.

Thus, we have

Wp(µt, µ∞) ≤ Ce−κD
∞t.

7. Conclusion. We presented the dynamic properties of the augmented Kuramoto
model which is a second-order lifting of the Kuramoto model for synchronization.
For the particle Kuramoto model with distributed natural frequencies, the complete
(frequency) synchronization can be studied by analyzing the temporal evolution of

D(Θ̇). However, it is not clear how to verify the complete synchronization for the
corresponding mean-field kinetic equation directly. This is why we introduced a



UNIFORM STABILITY AND MEAN-FIELD LIMIT OF THE KURAMOTO MODEL 321

second-order lifting of the Kuramoto model. For the corresponding kinetic equa-
tion, the complete frequency synchronization can be obtained via the Lyapunov
functional measuring the dispersion of the frequency variations. Our proposed
second-order model has a formal similarity to the Cucker-Smale flocking model.
As long as the phase diameter is confined in a quarter arc, the flocking estimate,
uniform `p-stability and mean-field limit for the extended Kuramoto model can be
analyzed using the similar techniques done for the Cucker-Smale model. As afore-
mentioned in Introduction, the reason that we focus on the mean-field case (all-to-all
couplings) is that we are interested in the complete synchronization estimate for the
kinetic Kuramoto equation at the kinetic level without lifting particle results to the
kinetic level. Other than this, some of the estimates studied in this paper can be
extended to a more general setting. For example, we considered synchronization dy-
namics of Kuramoto oscillators on the complete network, but some estimates such
as the uniform stability and synchronization estimates at the particle level can be
certainly extended to the locally coupled Kuramoto oscillators over the general net-
works, say symmetric and connected networks. Moreover, nonlinear stability and
instability of the incoherent state can be studied for the proposed kinetic equation.
We leave these interesting issues as a future work.
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