Research article Special Issues

Mean-field limit of a hybrid system for multi-lane car-truck traffic

  • Received: 01 September 2021 Revised: 30 May 2022 Accepted: 11 January 2023 Published: 24 February 2023
  • In the present work we model multi-lane traffic flow in presence of two population of vehicles: cars and trucks. We first develop a finite-dimensional hybrid system which rely on continuous Bando-Follow-the-Leader dynamics coupled with discrete events motivated by the lane-change maneuvers. Then we rigorously prove that the mean-field limit is given by a system of Vlasov-type PDE with source terms generated by the lane-change maneuvers of the human-driven vehicles.

    Citation: Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli. Mean-field limit of a hybrid system for multi-lane car-truck traffic[J]. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031

    Related Papers:

  • In the present work we model multi-lane traffic flow in presence of two population of vehicles: cars and trucks. We first develop a finite-dimensional hybrid system which rely on continuous Bando-Follow-the-Leader dynamics coupled with discrete events motivated by the lane-change maneuvers. Then we rigorously prove that the mean-field limit is given by a system of Vlasov-type PDE with source terms generated by the lane-change maneuvers of the human-driven vehicles.



    加载中


    [1] G Albi, N Bellomo, L Fermo, S. Y Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math Models Methods Appl Sci, 29 (2019): 1901–2005. https://doi.org/10.1142/S0218202519500374 doi: 10.1142/S0218202519500374
    [2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Berlin: Springer Science & Business Media, 2008.
    [3] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama. Structure stability of congestion in traffic dynamics, Jpn J Ind Appl Math, 11 (1994), 203–223. https://doi.org/10.1007/BF03167222 doi: 10.1007/BF03167222
    [4] N. Bellomo, C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev Soc Ind Appl Math, 53 (2011), 409–463. https://doi.org/10.1137/090746677 doi: 10.1137/090746677
    [5] S. Benzoni-Gavage, R. M. Colombo, An $n$-populations model for traffic flow, Eur J Appl Math, 14 (2003), 587–612.
    [6] V. I. Bogachev, Measure Theory, Heidelberg: Springer Berlin, 2007.
    [7] R. Borsche, A. Klar, M. Zanella, Kinetic-controlled hydrodynamics for multilane traffic models, Physica A, 587 (2022), 126486. https://doi.org/10.1016/j.physa.2021.126486 doi: 10.1016/j.physa.2021.126486
    [8] M. S. Branicky, V. S. Borkar, S. K. Mitter, A unified framework for hybrid control: model and optimal control theory, IEEE Trans. Automat. Contr., 43 (1998), 31–45. https://doi.org/10.1109/9.654885 doi: 10.1109/9.654885
    [9] P. Cardaliaguet, N. Forcadel, From heterogeneous microscopic traffic flow models to macroscopic models, SIAM J. Math. Anal., 53 (2021), 309–322. https://doi.org/10.1137/20M1314410 doi: 10.1137/20M1314410
    [10] M. T. Chiri, X. Q. Gong, B. Piccoli, Hybrid multi-population traffic flow model: Optimal control for a mean-field limit, [Preprint], (2021) [cited 2022 Feb 20 ]. Available from: https://cvgmt.sns.it/media/doc/paper/5302/Conference_paper_Car_Truck_with_control.pdf
    [11] V. Coscia, M. Delitala, P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int J Non Linear Mech, 42 (2007), 411–421. https://doi.org/10.1016/j.ijnonlinmec.2006.02.008 doi: 10.1016/j.ijnonlinmec.2006.02.008
    [12] I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513–516. https://doi.org/10.1038/nature03236 doi: 10.1038/nature03236
    [13] E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model Simul, 9 (2011), 155–182. https://doi.org/10.1137/100797515 doi: 10.1137/100797515
    [14] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [15] M. Delitala, A. Tosin, Mathematical modeling of vehicular traffic: a discrete kinetic theory approach, Math. Models Methods Appl. Sci., 17 (2007), 901–932. https://doi.org/10.1142/S0218202507002157 doi: 10.1142/S0218202507002157
    [16] M. L. D. Monache, T. Liard, Anaïs Rat, R. Stern, R. Bhadani, B. Seibold, et al., Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles, Cham: Springer International Publishing, 2019,275–299.
    [17] A. Festa, S. Göttlich, A mean field game approach for multi-lane traffic management, IFAC-PapersOnLine, 51 (2018), 793–798.
    [18] M. Fornasier, B. Piccoli, F. Rossi, Mean-field sparse optimal control, Philos. Trans. Royal Soc., 372 (2014), 20130400.
    [19] M. Garavello, B. Piccoli, Hybrid necessary principle, SIAM J Control Optim, 43 (2005), 1867–1887. https://doi.org/10.1137/S0363012903416219 doi: 10.1137/S0363012903416219
    [20] D. C. Gazis, R. Herman, R. W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res., 9 (1961), 545–567. https://doi.org/10.1287/opre.9.4.545 doi: 10.1287/opre.9.4.545
    [21] R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid dynamical systems, IEEE Control Syst. Mag., 29 (2009), 28–93. https://doi.org/10.1109/MCS.2008.931718 doi: 10.1109/MCS.2008.931718
    [22] X. Q. Gong, A. Keimer, On the well-posedness of the "bando-follow the leader" car following model and a "time-delayed version", [Preprint], (2022) [cited 2022 Feb 24 ]. Available from: 10.13140/RG.2.2.22507.62246
    [23] X. Q. Gong, B. Piccoli, G. Visconti, Mean-field limit of a hybrid system for multi-lane multi-class traffic, arXiv: 2007.14655, [Preprint], (2020) [cited 2022 Feb 24 ]. Available from: https://doi.org/10.48550/arXiv.2007.14655
    [24] Jack K. Hale, Ordinary differential equations, Roberte E. New York: Krieger Publishing company, 1980.
    [25] M Herty, R Illner, A Klar, V Panferov, Qualitative properties of solutions to systems of fokker-planck equations for multilane traffic flow, Transport Theor Stat Phys, 35 (2006), 31–54. https://doi.org/10.1080/00411450600878573 doi: 10.1080/00411450600878573
    [26] M. Herty, S. Moutari, G. Visconti, Macroscopic modeling of multilane motorways using a two-dimensional second-order model of traffic flow, SIAM J. Appl. Math., 78 (2018), 2252–2278. https://doi.org/10.1137/17M1151821 doi: 10.1137/17M1151821
    [27] M. Herty, L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165–179.
    [28] M. Herty, G. Puppo, G. Visconti, Model of vehicle interactions with autonomous cars and its properties, arXiv: 2107.14081, [Preprint], (2021) [cited 2022 Feb 20 ]. Available from: https://doi.org/10.48550/arXiv.2107.14081
    [29] M. Herty, G. Visconti, Analysis of risk levels for traffic on a multi-lane highway, IFAC-PapersOnLine, 51 (2018), 43–48.
    [30] H. Holden, N. H. Risebro, Models for dense multilane vehicular traffic, SIAM J. Math. Anal., 51 (2019), 3694–3713. https://doi.org/10.1137/19M124318X doi: 10.1137/19M124318X
    [31] R. Illner, A. Klar, T. Materne, Vlasov-Fokker-Planck models for multilane traffic flow, Commun. Math. Sci., 1 (2003), 1–12.
    [32] N. Kardous, A. Hayat, S. McQuade, X. Q. Gong, S. Truong, P. Arnold, et al., A rigorous multi-population multi-lane hybrid traffic model and its mean-field limit for dissipation of waves via autonomous vehicles, arXiv: 2205.06913, [Preprint], (2021) [cited 2022 Feb 20 ]. Available from: https://doi.org/10.48550/arXiv.2205.06913
    [33] A. Kesting, M. Treiber, D. Helbing, General lane-changing model mobil for car-following models, Trans Res Rec, 1999 (2007), 86–94. https://doi.org/10.3141/1999-10 doi: 10.3141/1999-10
    [34] A. Klar, R. Wegener, Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., 87 (1997), 91–114. https://doi.org/10.1007/BF02181481 doi: 10.1007/BF02181481
    [35] S. L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis, Trans. Res., 9 (1975), 225–235. https://doi.org/10.1016/0041-1647(75)90063-5 doi: 10.1016/0041-1647(75)90063-5
    [36] B. Piccoli, A. Tosin, M. Zanella, Model-based assessment of the impact of driver-assist vehicles using kinetic theory, Z Angew Math Phys, 71 (2020), 1–25. https://doi.org/10.1007/s00033-019-1224-x doi: 10.1007/s00033-019-1224-x
    [37] B. Piccoli, Hybrid systems and optimal control, Proceedings of the 37th IEEE Conference on Decision and Control, 1 (1998), 13–18.
    [38] B. Piccoli, F. Rossi, Generalized wasserstein distance and its application to transport equations with source, Arch Ration Mech Anal, 211 (2014), 335–358. https://doi.org/10.1007/s00205-013-0669-x doi: 10.1007/s00205-013-0669-x
    [39] B. Piccoli, A. Tosin, Vehicular traffic: A review of continuum mathematical models, Encycl. Complex. Syst. Sci., 22 (2009), 9727–9749.
    [40] I. Prigogine, A Boltzmann-like approach to the statistical theory of traffic flow, In: R. Herman, editor, Theory of traffic flow, Amsterdam: Elsevier, 1961,158–164.
    [41] I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, New York: American Elsevier Publishing, 1971.
    [42] G. Puppo, M. Semplice, A. Tosin, G. Visconti, Analysis of a multi-population kinetic model for traffic flow, Commun Math Sci, 15 (2017), 379–412. https://doi.org/10.4310/CMS.2017.v15.n2.a5 doi: 10.4310/CMS.2017.v15.n2.a5
    [43] A Reuschel, Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle, Zeitschrift des Oesterreichischen Ingenieur-und Architekten-Vereines, 95 (1950), 50–62.
    [44] J. Song, S. Karni, A second order traffic flow model with lane changing, J. Sci. Comput., 81 (2019), 1429–1445. https://doi.org/10.1007/s10915-019-01023-z doi: 10.1007/s10915-019-01023-z
    [45] Raphael E. Stern, S. Cui, Maria Laura Delle Monache, R. Bhadani, M. Bunting, M. Churchill, et al., Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transp Res Part C Emerg Technol, 89 (2018), 205–221. https://doi.org/10.1016/j.trc.2018.02.005 doi: 10.1016/j.trc.2018.02.005
    [46] A. B. Sukhinova, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, Two-dimensional macroscopic model of traffic flows, Math. Models Comput. Simul., 1 (2009), 669–676. https://doi.org/10.1134/S2070048209060027 doi: 10.1134/S2070048209060027
    [47] C. Tomlin, G. J. Pappas, S. Sastry, Conflict resolution for air traffic management: a study in multiagent hybrid systems, IEEE Trans. Automat. Contr., 43 (1998), 509–521. https://doi.org/10.1109/9.664154 doi: 10.1109/9.664154
    [48] T. Trimborn, L. Pareschi, M. Frank, Portfolio optimization and model predictive control: A kinetic approach, Discrete Cont. Dyn.-B, 24 (2019), 6209–6238. https://doi.org/10.3934/dcdsb.2019136 doi: 10.3934/dcdsb.2019136
    [49] P Zhang, R. X Liu, S. C. Wong, S. Q Dai, Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur J Appl Math, 17 (2006), 171–200. https://doi.org/10.1017/S095679250500642X doi: 10.1017/S095679250500642X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1284) PDF downloads(41) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog