Research article Special Issues

New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators

  • Received: 04 December 2020 Accepted: 08 February 2021 Published: 22 February 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator ($ \widehat{\mathcal{GPFIO}} $). The presented work establishes a relationship between weighted extended Čebyšev version and Pólya-Szegö type inequalities, which can be directly used in fractional differential equations and statistical theory. In addition, the proposed technique is also compared with the existing results. This work is important and timely for evaluating fractional operators and predicting the production of numerous real-world problems in varying nature.

    Citation: Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators[J]. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267

    Related Papers:

  • In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator ($ \widehat{\mathcal{GPFIO}} $). The presented work establishes a relationship between weighted extended Čebyšev version and Pólya-Szegö type inequalities, which can be directly used in fractional differential equations and statistical theory. In addition, the proposed technique is also compared with the existing results. This work is important and timely for evaluating fractional operators and predicting the production of numerous real-world problems in varying nature.



    加载中


    [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [2] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ., 2017 (2017), Article ID: 78.
    [3] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9
    [4] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [5] R. Gorenflo, F. Mainardi, Fractional calculus, integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, (1997), 223–276.
    [6] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011.
    [7] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [8] F. Jarad, E. Ugrlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [9] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, (2016), arXiv: 1612.08596.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 207 (2006).
    [11] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993).
    [12] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 128 (1999).
    [13] S. K. Panda, T. Abdeljawad, R. Chokkalingam, A complex valued approach to the solutions of Riemann Liouville integral, Atangana Baleanu integral operator and non linear Telegraph equation via fixed point method, Chaos, Solitons Fractals, 130 (2020), 109439. doi: 10.1016/j.chaos.2019.109439
    [14] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag Leffler kernel to neutral integro differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020): 110012.
    [15] T. Abdeljawad, R. P. Agarwal, E. Karapinar, S. K. Panda, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686
    [16] S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019 nCoV/SARS CoV 2, Results Physics (2020), 103433. Available from: https://doi.org/10.1016/j.rinp.2020.103433.
    [17] S. K. Panda, T. Abdeljawad, C.Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and $L_{p}$ Fredholm integral equations, Alexandria Eng. J. 59 (2020), 1959–1970.
    [18] I. Dassios, F. Font, Solution method for the time fractional hyperbolic heat equation, Math. Meth. Appl. Sci., (2020). Available from: https://doi.org/10.1002/mma.6506.
    [19] N. A. Shah, I. Dassios, J. D. Chung, A Decomposition Method for a Fractional Order Multi Dimensional Telegraph Equation via the Elzaki Transform, Symmetry, 13 (2021), 8.
    [20] I. Dassios, D. Baleanu, Caputo and related fractional derivatives in singular systems, Appl. Math. Comput, 37 (2018), 591–606.
    [21] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 1225 (2020), doi: 10.3390/math7121225.
    [22] D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, et al. Unveiling the link between fractional Schrodinger equation and light propagation in honeycomb lattice, Ann. Phys., 529 (2017), 1700149. doi: 10.1002/andp.201700149
    [23] Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belic, Y. Zhang, Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation, Opt. Express, 25 (2017), 32401. doi: 10.1364/OE.25.032401
    [24] A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661–674.
    [25] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), Article 86.
    [26] P. Cerone, S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38 (2007), 37–49. doi: 10.5556/j.tkjm.38.2007.92
    [27] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497.
    [28] Z. Dahmani, New inequalities for a class of differentiable functions, Int. J. Nonlinear Anal. Appl., 2 (2011), 19–23.
    [29] Z. Dahmani, The Riemann-Liouville operator to generate some new inequalities, Int. J. Nonlinear Sci., 12 (2011), 452–455.
    [30] Z. Dahmani, About some integral inequalities using Riemann? Liouville integrals, Gen. Math., 20 (2012), 63–69.
    [31] Z. Dahmani, A. Khameli, K. Fareha, Some Riemann-Liouville-integral inequalities for the weighted and the extended Chebyshev functionals, Konuralp J. Math., 5 (2017), 43–48.
    [32] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving Riemann–Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44.
    [33] Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38.
    [34] Z. Dahmani, L. Tabharit, S. Taf, New inequalities via Riemann-Liouville fractional integration, J. Adv. Res. Sci. Comput., 2 (2010), 40–45.
    [35] S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for $k$-fractional integrals and their applications, AIMS. Math., 4 (2019), 1087–1100. doi: 10.3934/math.2019.4.1087.
    [36] S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalize dRiemann-Liouville fractional integrals of exponentially and their applications, Mathematics, 807 (2019), doi: 10.3390/math7090807.
    [37] S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Eqs., 2020 (2020).
    [38] S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, Comput. Model. Eng. Sci., 126 (2021), 359–378.
    [39] Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y. M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Differ. Equs., 2020 (2020).
    [40] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equs., 2020 (2020), Article number: 647.
    [41] S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020 (2020), Article ID: 1626091.
    [42] S. Rashid, H. Ahmad, A. Khalid, Y. M. Chu, On discrete fractional integral inequalities for a class of functions, Complexity, 2020 (2020).
    [43] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equs., 2020 (2020).
    [44] T. Abdeljawad, S. Rashid, A. A. AL.Deeb, Z. hammouch, Y. M. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equs., 2020 (2020).
    [45] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054. doi: 10.3934/math.2020451
    [46] H. G. Jile, S. Rashid, M. A. Noor, A. Suhail, Y. M. Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108–6123. doi: 10.3934/math.2020392
    [47] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized $(s, m)$-convex functions and applications, Adv. Differ. Equs., 2020 (2020).
    [48] S. Zaheer Ullah, M. Adil Khan. Y. M. Chu, A note on generalized convex function, J. Inequal. Appl., 2019 (2019), 291. Available from: https://doi.org/10.1186/s13660-019-2242-0.
    [49] H. H. Chu, H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, D. Baleanu, et al. Quantum analogs of Ostrowski-type inequalities for Raina's function correlated with coordinated generalized $\Lambda$-convex functions, Symmetry, 308 (2020), doi: 10.3390/sym12020308.
    [50] E. Set, A. O. Akdemir, İ. Mumcu, Čebyšev type inequalities for fractional integrals. Submitted.
    [51] E. Set, M. Özdemir, S. Dragomir, On the Hermite-Hadamard inequality and othral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102. doi: 10.1155/2010/148102
    [52] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.
    [53] S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504.
    [54] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Eqs, 2019 (2019), Article ID: 454.
    [55] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis: Band I, Die Grundlehren der mathmatischen Wissenschaften, Springer-Verlag, New York, 1964.
    [56] G. Samko, A. A. Kilbas, I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
    [57] A. Tassaddiq, G. Rahman, K. S. Nisar, M. Samraiz, Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals, Adv. Diff. Eqs., 2020 (2002), 96. doi.org/10.1186/s13662-020-2543-0.
    [58] N. Elezovic, L. Marangunic, G. Pecaric, Some improvement of Grüss type inequality, J. Math. Inequal., 1 (2007), 425–436.
    [59] Y. Zhang, H. Zhong, M. R. Belic, Y. Zhu, W. P. Zhong, Y. Zhang, et al. PT symmetry in a fractional Schrodinger equation, Laser Photonics Rev., 10 (2017), 526–531.
    [60] Y. Zhang, X. Liu, M. R. Belic, W. Zhong, Y. P. Zhang, M. Xiao, Propagation dynamics of a Light Beam in a Fractional Schrodinger Equation, Phys. Rev. Lett., 115 (2015), 180403. doi: 10.1103/PhysRevLett.115.180403
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2324) PDF downloads(209) Cited by(38)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog