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1. Introduction

Fractional calculus has been extraordinarily improved as a result of the innovation and application
of classical mathematics. Several analysts have demonstrated that the image processing with newly
proposed calculus can depict the model more precisely rather than the classical images with fractional
operators [1–3]. Resultantly, fractional calculus has been broadly utilized in the scientific displaying
of issues in different scientific areas [4] and technology [5–7]. Several definitions/approaches, for
example, Riemann-Liouville, Hadamard, Katugampola, Riesz, Caputo-Fabrizio, Grunwald-Letnikov
and Atangana-Baleanu analytics, are presented and examined in a wide assortment of theory,
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see [1–3, 6–20]. Many significant methodologies have been utilized to attain the analytical solutions
of fractional-order differential equations, for example, the Laplace, Mellin, Fourier, and Hankel
transforms are acquainted. However, the fractional-order differential equations established from
natural are regularly nonlinear and incredibly complicated, and many of them cannot attain the exact
analytic solutions. Consequently, various fractional calculus has dominating features of depicting
dynamic framework, moreover, they have few impediments. For instance, they can tackle smoothly
differentiable and integral operators. Recently, another methodology, which was initially proposed by
Jarad et al. [7], to determine nondifferentiable issues in a fractional Schrödinger equation, and its
significant properties were created. Later on, Rashid et al. [21] proposed more general version of
̂GPFIO has become progressively famous and attained significant progression due predominantly to

its remarkable properties in demonstrating complex nonlinear dynamical frameworks in various parts
of scientific material science, such as integrodifferential equations, heat transforms, probability
density functions, and others.

Fractional integral inequalities have been found in the fields of engineering and physics. Fractional
integral variants perform an imperative role in understanding the universe, and there are many direct
approaches to find the uniqueness and existence of the linear and nonlinear differential equations,
[22, 23]. Based on fractional operators, one derives several generalizations of the Hermite-Hadamard,
Hardy, Salter, Ostrowski, Čebyšev, and Pólya-Szegö have taken an important place in pure and applied
mathematics [24–34]. Furthermore, Rashid et al. [35, 36], Zaheer et al. [48], Chu et al. [49] and Set
et al. [50, 51] contributed significantly in this field. For more information about inequalities on the
fractional operators, we referred to the interested readers, see [21, 37–47].
Čebyšev [52] introduced the well-known celebrated functional for two integrable functions is stated as

T(F ,G) =
1

q2 − q1

q2∫
q1

F (%)G(%)d% −
( 1
q2 − q1

q2∫
q1

F (%)d%
)( 1

q2 − q1

q2∫
q1

G(%)d%
)
, (1.1)

where F and G are two integrable functions on [q1, q2]. If F and G are synchronous, i.e.,(
F (%) − F (ω)

)(
G(%) − G(ω)

)
≥ 0,

for any %, ω ∈ [q1, q2], then T(F ,G) ≥ 0. The functional (1.1) has attracted many researchers attention
due mainly to its revealed presentations in statistical theory, numerical analysis, transform theory and
in decision-making analysis.

Besides aspects with abundant utilities, the functional (1.1) has been expanded plenteous of
concentration to produce a diversity of essential variants (see, for example, [53, 54]). Various
illustrious kinds stated in the literature are direct effects of the abundant tenders in optimizations and
transform theory. In this concern, Pólya-Szegö integral inequality is one of the most celebrated
inequality. In [55], Pólya-Szegö contemplated the following variant as follows:

q2∫
q1

F 2(%)d%
q2∫

q1

G2(%)d%

( q2∫
q1

F (%)G(%)d%
)2
≤

1
4

(√
QR
qr

+

√
qr
QR

)2

. (1.2)
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The constant 1
4 is best feasible in (1.2) make the experience it cannot get replaced by a smaller constant.

It is extensively identified that the aforesaid variants in both continuous and discrete forms show a
substantial job in inspecting the qualitative demeanor of differential/difference equations, respectively,
further to numerous new branches of mathematics. Motivated by [52, 55], our intention is to
demonstrate more wide description of Pólya-Szegö and Čebyšev type variants via Hilfer- ̂GPFIO.

In this paper, motivated and inspired by the ongoing research in this field, some novel weighted
extensions of Čebyšev and Pólya-Szegö type inequalities are governed in the frame of
Hilfer- ̂GPFIO are developed. Several new generalizations are introduced which plays a crucial role
in our investigations. More precisely, under some working assumptions and using extended Čebyšev
functional, the ̂GPFIO for the considered variants are studied. Here, characterization results are
formulated and proved. Future research should focus on Hilfer- ̂GPFIO through novel outcomes and
extension of the existing results with permeable fields of science.

In this section, we demonstrate the basic notions and related preliminaries concerning to fractional
calculus [10].

Now, we describe a new fractional operator which is known as the the Λ-generalized proportional
fractional integral which is proposed by Rashid et al. [21].

Definition 1.1. ( [21]) Let (q1, q2)(−∞ ≤ q1 < q2 ≤ ∞) be a finite or infinite real interval with ϕ > 0.
Let a positive monotone and increasing function Λ(υ) defined on (q1, q2] such that Λ(0) = 0 and Λ′(υ)
is continuous on [q1, q2). Then the left and right-sided Hilfer- ̂GPFIO of a function F are presented
as follows:

( ΛJϕ,ε
q1
F )(%) =

1
εϕΓ(ϕ)

%∫
q1

exp[ ε−1
ε

(Λ(%) − Λ(υ))]Λ′(υ)
(Λ(%) − Λ(υ))1−ϕ F (υ)dυ, q1 < % (1.3)

and

( ΛJϕ,ε
q2
F )(%) =

1
εϕΓ(ϕ)

q2∫
%

exp[ ε−1
ε

(Λ(υ) − Λ(%))]Λ′(υ)
(Λ(υ) − Λ(%))1−ϕ F (υ)dυ, % < q2, (1.4)

where the proportionality index ε ∈ (0, 1], ϕ ∈ C,R(ϕ) > 0, and Γ(%) =
∞∫
0

x%−1e−xdυ is the Gamma

function.

Remark 1. In Definition 1.2:
(1) If we consider Λ(υ) = υ, then we will attain both sided generalized proportional fractional integral
operator in [7].
(2) If we consider ε = 1, then we will attain both sided generalized Riemann-Liouville fractional
integral operator in [56].
(3) If we consider ε = 1, along Λ(υ) = υ, then we will attain both sided Riemann-Liouville fractional
integral operator in [10].
(4) If we consider Λ(υ) = ln υ, then we will attain both sided generalized proportional Hadamard
fractional integral operator in [54].
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(5) If we consider Λ(υ) = ln υ along with ε = 1, then we attain both sided Hadamard fractional
integral operator [56].

Next, we present the one-sided definition of the Hilfer- ̂GPFIO proposed by Rashid et al. [21].

Definition 1.2. ( [21]) Let (q1, q2)(−∞ ≤ q1 < q2 ≤ ∞) be a finite or infinite real interval with ϕ > 0.
Let a positive monotone and increasing function Λ(υ) defined on (q1, q2] such that Λ(0) = 0, and Λ′(υ)
is continuous on [q1, q2). Then the one sided Hilfer- ̂GPFIO of a function F are presented as follows:

( ΛJϕ,ε
υ1
F )(%) =

1
εϕΓ(ϕ)

%∫
0

exp[ ε−1
ε

(Λ(%) − Λ(υ))]Λ′(υ)
(Λ(%) − Λ(υ))1−ϕ F (υ)dυ, 0 < %. (1.5)

2. Weighted extensions of Čebyšev functionals via Hilfer- ̂GPFIO

In the sequel, we derive some refinements for the weighted extensions of Čebyšev functionals via
Hilfer- ̂GPFIO. In this continuation, we assume that Λ(υ) is a strictly increasing function on (0,∞)
and Λ′(υ) is continuous, 0 ≤ q1 < q2 with the assumption that at any point q3 ∈ [q1, q2], we have
Λ(q3) = 0.

Theorem 2.1. For ε ∈ (0, 1], ϕ ∈ C with <(ϕ) > 0 and let there are two differentiable functions
F and G defined on [0,∞). Also, assume that there is a positive integrable function W1 defined on
[0,∞) such that F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and

1
u + 1

u1
= 1. Suppose that a positive monotone function Λ with continuous derivative defined on [0,∞)

having Λ(0) = 0. Then the following variant grips for all % > 0

2
∣∣∣( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

∣∣∣
≤

(
‖F ′‖us

εuϕΓu(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u

×

(
‖G′‖

u1
r

εu1ϕΓu1(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u1

≤
‖F ′‖us‖G

′‖
u1
r(

εϕΓ(ϕ)
)2

( %∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

)
. (2.1)
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Proof. Let us suppose the function

H(υ, ῡ) =
(
F (υ) − F (ῡ)

)(
G(υ) − G(ῡ)

)
; υ, ῡ ∈ (0, %), (2.2)

which can be written as

H(υ, ῡ) = F (υ)G(υ) − F (υ)G(ῡ) − F (ῡ)G(υ) − G(ῡ)F (ῡ). (2.3)

Conducting produt on both sides of (2.2) by 1
εϕΓ(ϕ) exp

[ ε−1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) −Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)

and then integrating the estimates with respect to υ over (0, %), we have

1
εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)H(υ, ῡ)dυ

=
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)F (υ)G(υ)dυ

−
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)F (υ)G(ῡ)dυ

−
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)F (ῡ)G(υ)dυ

−G(ῡ)F (ῡ)
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)dυ, (2.4)

arrives at

1
εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)W1(υ)H(υ, ῡ)dυ

=
( ΛJ

ε,ϕ
0+,%W1FG

)
(%) − G(ῡ)

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

−F (ῡ)
( ΛJ

ε,ϕ
0+,%W1G

)
(%) + F (ῡ)G(ῡ)

( ΛJ
ε,ϕ
0+,%W1

)
(%). (2.5)

Again, taking product both sides of (2.5) by 1
εϕΓ(ϕ) exp

[ ε−1
ε

(
Λ(%) − Λ(ῡ)

)](
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)W1(ῡ)

and then performing integration for the variable ῡ over (0, %), we have

1(
εϕΓ(ϕ)

)2

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(υ)W1(υ)W1(ῡ)H(υ, ῡ)dυdῡ

= 2
(( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

)
. (2.6)
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Moreover, alternately, we have

H(υ, ῡ) =

y∫
x

y∫
x

F ′(θ)G′(ϑ)dθdϑ. (2.7)

Taking into account the Hölder inequality, we ahve

|F (υ) − F (ῡ)| ≤ |υ − ῡ|
1
s1

∣∣∣∣ y∫
x

|F ′(θ)|sdθ
∣∣∣∣ 1

s
(2.8)

and

|G(υ) − G(ῡ)| ≤ |υ − ῡ|
1
r1

∣∣∣∣ y∫
x

|G′(ϑ)|rdϑ
∣∣∣∣ 1

r
. (2.9)

Conducting product between (2.8) and (2.9), we get

|G(υ, ῡ)| ≤ |
(
F (υ) − F (ῡ)

)(
G(υ) − G(ῡ)

)
|

≤ |υ − ῡ|
1
s1

+ 1
r1

∣∣∣∣ y∫
x

|F ′(θ)|sdθ
∣∣∣∣ 1

s
∣∣∣∣ y∫

x

|G′(ϑ)|rdϑ
∣∣∣∣ 1

r
. (2.10)

Thus, from (2.6) and (2.10), we have

2
∣∣∣( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

∣∣∣
=

1(
εϕΓ(ϕ)

)2

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|G(υ, ῡ)|dυdῡ

≤
1(

εϕΓ(ϕ)
)2

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)

×|υ − ῡ|
1
s1

+ 1
r1

∣∣∣∣ y∫
x

|F ′(θ)|sdθ
∣∣∣∣ 1

s
∣∣∣∣ y∫

x

|G′(ϑ)|rdϑ
∣∣∣∣ 1

r
dυdῡ. (2.11)

Further, taking into consideration the Hölder inequality for bivariate integral, we have

2
∣∣∣( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

∣∣∣
≤

1(
εϕΓ(ϕ)

)2

( %∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
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×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)

×|υ − ῡ|
1
s1

+ 1
r1

∣∣∣∣ y∫
x

|F ′(θ)|sdθ
∣∣∣∣ u

s
dυdῡ

) 1
u

×

( %∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)

×|υ − ῡ|
1
s1

+ 1
r1

∣∣∣∣ y∫
x

|G′(ϑ)|rdϑ
∣∣∣∣ u1

r
dυdῡ

) 1
u1
. (2.12)

Now, using the following properties∣∣∣∣ y∫
x

|F ′(θ)|sdθ
∣∣∣∣ 1

s
≤ ‖F ′‖s and

∣∣∣∣ y∫
x

|G′(ϑ)|rdϑ
∣∣∣∣ 1

r
≤ ‖G′‖r. (2.13)

From (2.12), we have

2
∣∣∣( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

∣∣∣
≤

(
‖F ′‖us

εuϕΓu(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u

×

(
‖G′‖

u1
r

εu1ϕΓu1(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u1
. (2.14)

Therefore, we conclude that

2
∣∣∣( ΛJ

ε,ϕ
0+,%W1

)
(%)

( ΛJ
ε,ϕ
0+,%FG

)
(%) −

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%)

∣∣∣
≤
‖F ′‖us‖G

′‖
u1
r(

εϕΓ(ϕ)
)2

( %∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ)W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

)
, (2.15)

this is the desired inequality (2.16). �

Several notable special cases of Theorem 2 are discussed as follows.

(I) If we take Λ(υ) = υ in Theorem 2, then we attain a new result for generalized proportional
fractional integral operator.
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Corollary 1. For ε ∈ (0, 1], ϕ ∈ C with <(ϕ) > 0 and let there are two differentiable functions F
and G defined on [0,∞). Also, assume that there is a positive integrable functionW1 defined on [0,∞)
such that F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and 1

u + 1
u1

= 1.
Then the following varinat grips for all % > 0

2
∣∣∣(J ε,ϕ

0+,%W1
)
(%)

(
J

ε,ϕ
0+,%FG

)
(%) −

(
J

ε,ϕ
0+,%W1F

)
(%)

(
J

ε,ϕ
0+,%W1G

)
(%)

∣∣∣
≤

(
‖F ′‖us

εuϕΓu(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(% − υ)
]
exp

[ε − 1
ε

(% − ῡ)
](
% − υ

)ϕ−1(
% − ῡ

)ϕ−1

×W1(υ)W1(ῡ)|υ − ῡ|
1
s1

+ 1
r1 dυdῡ

) 1
u

×

(
‖G′‖

u1
r

εu1ϕΓu1(ϕ)

%∫
0

%∫
0

exp
[ε − 1
ε

(% − υ)
]
exp

[ε − 1
ε

(% − ῡ)
](
% − υ

)ϕ−1(
% − ῡ

)ϕ−1

×W1(υ)W1(ῡ)|υ − ῡ|
1
s1

+ 1
r1 dυdῡ

) 1
u1

≤
‖F ′‖us‖G

′‖
u1
r(

εϕΓ(ϕ)
)2

( %∫
0

%∫
0

exp
[ε − 1
ε

(% − υ)
]
exp

[ε − 1
ε

(% − ῡ)
](
% − υ

)ϕ−1(
% − ῡ

)ϕ−1

×W1(υ)W1(ῡ)|υ − ῡ|
1
s1

+ 1
r1 dυdῡ

)
.

(II) If we take Λ(υ) = υ along with ε = 1 in Theorem 2, then we get the new result for Riemann-
Liouville fractional integral operator.

Corollary 2. For ϕ ∈ C with<(ϕ) > 0 and let there are two differentiable functions F and G defined
on [0,∞). Also, assume that there is a positive integrable function W1 defined on [0,∞) such that
F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and 1

u + 1
u1

= 1. Then the
following varinat grips for all % > 0

2
∣∣∣(Jϕ

0+,%W1
)
(%)

(
J

ϕ
0+,%FG

)
(%) −

(
J

ϕ
0+,%W1F

)
(%)

(
J

ϕ
0+,%W1G

)
(%)

∣∣∣
≤

(
‖F ′‖us

Γu(ϕ)

%∫
0

%∫
0

(
% − υ

)ϕ−1(
% − ῡ

)ϕ−1
W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u

×

(
‖G′‖

u1
r

Γu1(ϕ)

%∫
0

%∫
0

(
% − υ

)ϕ−1(
% − ῡ

)ϕ−1
W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

) 1
u1

≤
‖F ′‖us‖G

′‖
u1
r(

Γ(ϕ)
)2

( %∫
0

%∫
0

(
% − υ

)ϕ−1(
% − ῡ

)ϕ−1
W1(υ)W1(ῡ)|υ − ῡ|

1
s1

+ 1
r1 dυdῡ

)
,

which is proposed by Dahmani et al. [32]

Remark 2. In Theorem 2:
(1) If we choose Λ(υ) = xα

α
along with ϕ = 1, then we get Theorem 3.1 of Tassaddiq et al. [57].
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(2) If we choose Λ(υ) = υ along with ε = ϕ = 1, then we get result of Elezovic et al. [58].

Theorem 2.2. For ε ∈ (0, 1], ϕ ∈ C with<(ϕ) > 0 and let there are two differentiable functions F and
G defined on [0,∞). Also, assume that there are two positive integrable functionW1 andW2 defined
on [0,∞) such that F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and

1
u + 1

u1
= 1. Suppose that a positive monotone function Λ with continuous derivative defined on [0,∞)

having Λ(0) = 0. Then the following variant grips for all % > 0∣∣∣( ΛJ
ε,ζ
0+,%W2

)
(%)

( ΛJ
ε,ϕ
0+,%W1FG

)
(%) −

( ΛJ
ε,ζ
0+,%W1G

)
(%)

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

−
( ΛJ

ε,ζ
0+,%W2F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%) +

( ΛJ
ε,ζ
0+,%W2FG

)
(%)

( ΛJ
ε,ϕ
0+,%W1

)
(%)

∣∣∣
≤
‖F ‖s‖G‖r

εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×

(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(υ)Λ′(υ)

∣∣∣υ − ῡ∣∣∣ 1
s1

+ 1
r1W1(υ)W2(ῡ)dυdῡ. (2.16)

Proof. Conducting product on both sides of (2.5) by
1

εζΓ(ζ) exp
[ ε−1
ε

(
Λ(%) − Λ(ῡ)

)](
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(ῡ)W2(ῡ) and integrating the estimates with respect to

ῡ over (0, %), we have

1
εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×

(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(υ)Λ′(υ)W1(υ)W2(ῡ)H(υ, ῡ)dυdῡ

=
( ΛJ

ε,ζ
0+,%W2

)
(%)

( ΛJ
ε,ϕ
0+,%W1FG

)
(%) −

( ΛJ
ε,ζ
0+,%W1G

)
(%)

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

−
( ΛJ

ε,ζ
0+,%W2F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%) +

( ΛJ
ε,ζ
0+,%W2FG

)
(%)

( ΛJ
ε,ϕ
0+,%W1

)
(%). (2.17)

Taking modulas on both sides of (2.20), one obtains∣∣∣( ΛJ
ε,ζ
0+,%W2

)
(%)

( ΛJ
ε,ϕ
0+,%W1FG

)
(%) −

( ΛJ
ε,ζ
0+,%W1G

)
(%)

( ΛJ
ε,ϕ
0+,%W1F

)
(%)

−
( ΛJ

ε,ζ
0+,%W2F

)
(%)

( ΛJ
ε,ϕ
0+,%W1G

)
(%) +

( ΛJ
ε,ζ
0+,%W2FG

)
(%)

( ΛJ
ε,ϕ
0+,%W1

)
(%)

∣∣∣
=

1
εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(υ)Λ′(υ)W1(υ)W2(ῡ)

∣∣∣H(υ, ῡ)
∣∣∣dυdῡ

≤
1

εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×
(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(υ)Λ′(υ)

∣∣∣υ − ῡ∣∣∣ 1
s1

+ 1
r1

∣∣∣∣
×

y∫
x

|F ′(θ)|sdθ
∣∣∣∣ 1

s
∣∣∣∣ y∫

x

|G′(ϑ)|rdϑ
∣∣∣∣ 1

r
W1(υ)W2(ῡ)dυdῡ
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=
‖F ‖s‖G‖r

εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)]
×

(
Λ(%) − Λ(υ)

)ϕ−1(
Λ(%) − Λ(ῡ)

)ζ−1
Λ′(υ)Λ′(υ)

∣∣∣υ − ῡ∣∣∣ 1
s1

+ 1
r1W1(υ)W2(ῡ)dυdῡ. (2.18)

�

Some special cases of Theorem 2.2 are stated as follows.
(I) If we choose Λ(υ) = υ, then we get a new result for ̂GPFIO.

Corollary 3. For ε ∈ (0, 1], ϕ ∈ C with<(ϕ) > 0 and let there are two differentiable functions F and
G defined on [0,∞). Also, assume that there are two positive integrable functionW1 andW2 defined
on [0,∞) such that F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and

1
u + 1

u1
= 1. Then the following varinat grips for all % > 0∣∣∣(J ε,ζ

0+,%W2
)
(%)

(
J

ε,ϕ
0+,%W1FG

)
(%) −

(
J

ε,ζ
0+,%W1G

)
(%)

(
J

ε,ϕ
0+,%W1F

)
(%)

−
(
J

ε,ζ
0+,%W2F

)
(%)

(
J

ε,ϕ
0+,%W1G

)
(%) +

(
J

ε,ζ
0+,%W2FG

)
(%)

(
J

ε,ϕ
0+,%W1

)
(%)

∣∣∣
≤
‖F ‖s‖G‖r

εϕΓ(ϕ)εζΓ(ζ)

%∫
0

%∫
0

exp
[ε − 1
ε

(% − υ)
]
exp

[ε − 1
ε

(% − ῡ)
]
(% − υ)ϕ−1(% − ῡ)ζ−1

×
∣∣∣υ − ῡ∣∣∣ 1

s1
+ 1

r1W1(υ)W2(ῡ)dυdῡ. (2.19)

(II) If we choose Λ(υ) = υ along with ε = 1, then we get a result for Riemann-Liouville fractional
integral operator.

Corollary 4. For ε ∈ (0, 1], ϕ ∈ C with<(ϕ) > 0 and let there are two differentiable functions F and
G defined on [0,∞). Also, assume that there are two positive integrable functionW1 andW2 defined
on [0,∞) such that F ′ ∈ Ls([0,∞)),G′ ∈ Lr([0,∞)) for s, r, u > 1 having 1

s + 1
s1

= 1, 1
r + 1

r1
= 1, and

1
u + 1

u1
= 1. Then the following varinat grips for all % > 0∣∣∣(J ζ

0+,%W2
)
(%)

(
J

ϕ
0+,%W1FG

)
(%) −

(
J

ζ
0+,%W1G

)
(%)

(
J

ϕ
0+,%W1F

)
(%)

−
(
J

ζ
0+,%W2F

)
(%)

(
J

ϕ
0+,%W1G

)
(%) +

(
J

ζ
0+,%W2FG

)
(%)

(
J

ϕ
0+,%W1

)
(%)

∣∣∣
≤
‖F ‖s‖G‖r

Γ(ϕ)Γ(ζ)

%∫
0

%∫
0

(% − υ)ϕ−1(% − ῡ)ζ−1
∣∣∣υ − ῡ∣∣∣ 1

s1
+ 1

r1W1(υ)W2(ῡ)dυdῡ, (2.20)

which is proposed by Dahmani et al. [32].

Remark 3. In Theorem 2.2:
(1) If we choose Λ(υ) = υα

α
along with ϕ = 1, then we get Theorem 3.2 of Tassaddiq et al. [57].

(2) If we choose Λ(υ) = υ along with ε = ϕ = 1, then we get result of Dahmani et al. [31].
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3. Pólya-Szegö types inequalities involving the Hilfer- ̂GPFIO

In this section, we shall derive certain Pólya-Szegö type integral inequalities for real-valued
integrable functions via Hilfer- ̂GPFIO defined in (1.2).

Theorem 3.1. For ε ∈ (0, 1], ϕ ∈ C with<(ϕ) > 0 and let there are two positive integrable functions
F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous derivative
defined on [0,∞) having Λ(0) = 0. Assume that there exist four positive integrable functions Υ1,Υ2, χ1

and χ2 on [0,∞) such that

(I) 0 ≤ Υ1(υ) ≤ F (%) ≤ Υ2(υ), 0 ≤ χ1(υ) ≤ G(%) ≤ χ2(υ),
(
x ∈ [0, %], % > 0

)
.

then for % > 0, the following inequality holds:

1
4

(( ΛJ
ε,ϕ
0+,%

(
Υ1χ1 + Υ2χ2

)
FG

)
(%)

)2
≥

( ΛJ
ε,ϕ
0+,%χ1χ2F

2)(%)
( ΛJ

ε,ϕ
0+,%Υ1Υ2G

2)(%). (3.1)

Proof. From Condition (I), for υ ∈ [0, %], % > 0, we have(Υ2(υ)
χ1(υ)

−
F (υ)
G(υ)

)
≥ 0. (3.2)

Analogously, we have (F (υ)
G(υ)

−
Υ1(υ)
χ2(υ)

)
≥ 0. (3.3)

Multiplying (3.2) and (3.3), we obtain[
Υ1(υ)χ1(υ) + Υ2(υ)χ2(υ)

]
F (υ)G(υ) ≥ χ1(υ)χ2(υ)F 2(υ) + Υ1(υ)Υ2(υ)G2(υ). (3.4)

Conducting product on both sides of (3.4) by 1
εϕΓ(ϕ) exp

[ ε−1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ) and

integrating the estimates with respect to x over (0, %), we get

( ΛJ
ε,ϕ
0+,%

[(
Υ1χ1 + Υ2χ2

)
FG

])
(%) ≥

( ΛJ
ε,ϕ
0+,%χ1χ2F

2)(%) +
( ΛJ

ε,ϕ
0+,%Υ1Υ2G

2)(%).

Applying the AM −GM inequality, i.e., µ + ν ≥ 2
√
µν, µ, ν ∈ R+, we have

( ΛJ
ε,ϕ
0+,%

[(
Υ1χ1 + Υ2χ2

)
FG

])
(%) ≥ 2

√(
ΛJ

ε,ϕ
0+,%χ1χ2F

2)(%)
(

ΛJ
ε,ϕ
0+,%Υ1Υ2G

2)(%),

which leads to

1
4

(( ΛJ
ε,ϕ
0+,%

[(
Υ1χ1 + Υ2χ2

)
FG

])
(%)

)2
≥

( ΛJ
ε,ϕ
0+,%χ1χ2F

2)(%)
( ΛJ

ε,ϕ
0+,%Υ1Υ2G

2)(%).

Therefore, we obtain the inequality (3.5) as required. �

Some special cases of Theorem 3.1 are satated as follows.
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Corollary 5. For ε ∈ (0, 1], ϕ ∈ C with <(ϕ) > 0 and let there are two positive integrable functions
F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous derivative
defined on [0,∞) having Λ(0) = 0. Then

(II) 0 < q ≤ F (%) ≤ Q < ∞, 0 < r ≤ G(%) ≤ R < ∞,
(
x ∈ [0, %], % > 0

)
.

Then for % > 0, we have(
ΛJ

ε,ϕ
0+,%F

2)(%)
(

ΛJ
ε,ϕ
0+,%G

2)(%)(
ΛJ

ε,ϕ
0+,%FG

)
(%)

)2 ≤
1
4

(√ qr
QR

+

√
QR
qr

)2

.

(I) If we choose Λ(υ) = υ, then Theorem 3.1 reduces to a a new result for generalized proportional
fractional integral.

Corollary 6. For ε ∈ (0, 1], ϕ ∈ C with<(ϕ) > 0 and let there are two positive integrable functions F
and G defined on [0,∞). Then

1
4

((
J

ε,ϕ
0+,%

[(
Υ1χ1 + Υ2χ2

)
FG

])
(%)

)2
≥

(
J

ε,ϕ
0+,%χ1χ2F

2)(%)
(
J

ε,ϕ
0+,%Υ1Υ2G

2)(%). (3.5)

Remark 4. If we choose Λ(υ) = υ along with ε = 1, then Theorem 3.1 reduces to Lemma 3.1 in [53].

Theorem 3.2. For ε ∈ (0, 1], ϕ, ζ ∈ C with<(ϕ) > 0,<(ζ) > 0 and let there are two positive integrable
functions F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous
derivative defined on [0,∞) having Λ(0) = 0. Assume that there exist four positive integrable functions
Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (I), then the following inequality holds:(

ΛJ
ε,ζ
0+,%Υ1Υ2

)
(%)

(
ΛJ

ε,ϕ
0+,%χ1χ2

)
(%)

(
ΛJ

ε,ζ
0+,%F

2)(%)
(

ΛJ
ε,ϕ
0+,%G

2)(%)((
ΛJ

ε,ζ
0+,%Υ1F

)
(%)

(
ΛJ

ε,ϕ
0+,%χ1G

)
(%) +

(
ΛJ

ε,ζ
0+,%Υ2F

)
(%)

(
ΛJ

ε,ϕ
0+,%χ2G

)
(%)

)2 ≤
1
4
. (3.6)

Proof. Applying condition (I) to prove (3.9), we get(Υ2(υ)
χ1(ῡ)

−
F (υ)
G(ῡ)

)
≥ 0

and (F (υ)
G(ῡ)

−
Υ1(υ)
χ2(ῡ)

)
≥ 0,

which imply that (Υ1(υ)
χ2(ῡ)

+
Υ2(υ)
χ1(ῡ)

)F (υ)
F (ῡ)

≥
F 2(υ)
G2(υ)

+
Υ1(υ)Υ2(υ)
χ1(ῡ)χ2(ῡ)

. (3.7)

Multiplying both sides of (3.7) by χ1(ῡ)χ2(ῡ)G2ῡ, we have

Υ1(υ)F (υ)χ1(ῡ)G(ῡ) + Υ2(υ)F (υ)χ2(ῡ)G(ῡ)
≥ χ1(ῡ)χ2(ῡ)F 2(υ) + Υ1(υ)Υ2(υ)G2(ῡ). (3.8)
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Conducting product on both sides of (3.8) by
1

εϕΓ(ϕ)εζΓ(ζ) exp
[ ε−1
ε

(
Λ(%) − Λ(υ)

)]
exp

[ ε−1
ε

(
Λ(%) − Λ(ῡ)

)](
Λ(%) −Λ(υ)

)ϕ−1(
Λ(%) −Λ(ῡ)

)ϕ−1
Λ′(υ)Λ′(ῡ) and integrating the estimates with respect to υ and ῡ over

(0, %), we get

(( ΛJ
ε,ζ
0+,%Υ1F

)
(%)

(( ΛJ
ε,ϕ
0+,%χ1G

)
(%) +

(( ΛJ
ε,ζ
0+,%Υ2F

)
(%)

(( ΛJ
ε,ϕ
0+,%χ2G

)
(%)

≥
(( ΛJ

ε,ζ
0+,%F

2)(%)
(( ΛJ

ε,ϕ
0+,%χ1χ2

)
(%) +

(( ΛJ
ε,ϕ
0+,%G

2)(%)
(( ΛJ

ε,ζ
0+,%Υ1Υ2

)
(%).

Applying the AM −GM inequality, we get( ΛJ
ε,ζ
0+,%Υ1F

)
(%)

( ΛJ
ε,ϕ
0+,%χ1g

)
(%) +

( ΛJ
ε,ζ
0+,%Υ2F

)
(%)

( ΛJ
ε,ϕ
0+,%χ2G

)
(%)

≥ 2
√(

ΛJ
ε,ζ
0+,%F

2)(%)
(

ΛJ
ε,ϕ
0+,%χ1χ2

)
(%) +

(
ΛJ

ε,ϕ
0+,%G

2)(%)
(

ΛJ
ε,ζ
0+,%Υ1Υ2

)
(%),

which leads to the desired inequality in (3.9). The proof is completed. �

Some special cases of Theorem 3.2 are stated as follows.

Corollary 7. For ε ∈ (0, 1], ϕ, ζ ∈ C with<(ϕ) > 0,<(ζ) > 0 and let there are two positive integrable
functions F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous
derivative defined on [0,∞) having Λ(0) = 0. Assume that there exist four positive integrable functions
Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (II), then the following inequality holds:

rR
( ΛJ

ε,ζ
0+,%

)
(1)

( ΛJ
ε,ϕ
0+,%F

2)(%) + qQ
( ΛJ

ε,ϕ
0+,%

)
(1)

( ΛJ
ε,ζ
0+,%G

2)(%)

≤
(qr + QR)2

4
(( ΛJ

ε,ζ
0+,%F

)
(%)

( ΛJ
ε,ϕ
0+,%G

)
(%)

)2
.

(I) If we choose Λ(υ) = υ, then we have a new result for generalized proportional fractional integral
operator.

Corollary 8. For ε ∈ (0, 1], ϕ, ζ ∈ C with <(ϕ) > 0,<(ζ) > 0 and let there are two positive
integrable functions F and G defined on [0,∞). Assume that there exist four positive integrable
functions Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (I), then the following inequality holds:(

J
ε,ζ
0+,%Υ1Υ2

)
(%)

(
J

ε,ϕ
0+,%χ1χ2

)
(%)

(
J

ε,ζ
0+,%F

2)(%)
(
J

ε,ϕ
0+,%G

2)(%)(
J

ε,ζ
0+,%Υ1F

)
(%)

(
J

ε,ϕ
0+,%χ1G

)
(%) +

(
J

ε,ζ
0+,%Υ2F

)
(%)

(
J

ε,ϕ
0+,%χ2G

)
(%)

)2 ≤
1
4
. (3.9)

Remark 5. If we choose Λ(υ) = υ along with ε = 1, then Theorem 3.2 reduces to Lemma 3.3 in [53].

Theorem 3.3. For ε ∈ (0, 1], ϕ, ζ ∈ C with<(ϕ) > 0,<(ζ) > 0 and let there are two positive integrable
functions F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous
derivative defined on [0,∞) having Λ(0) = 0. Assume that there exist four positive integrable functions
Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (I), then the following inequality holds:

( ΛJ
ε,ϕ
0+,%

Υ2FG

χ1

)
(%)

( ΛJ
ε,ζ
0+,%

χ2FG

Υ1

)
(%) ≥

( ΛJ
ε,ϕ
0+,%F

2)(%)
( ΛJ

ε,ζ
0+,%G

2)(%). (3.10)
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Proof. Using condition (I), we have

1
εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)

Υ2(υ)
χ1(υ)

F (υ)G(υ)dυ

≥
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(υ)

)](
Λ(%) − Λ(υ)

)ϕ−1
Λ′(υ)F 2(υ)dυ,

which implies (
ΛJ

ε,ϕ
0+,%

Υ2FG

χ1

)
(%) ≥

(
ΛJ

ε,ϕ
0+,%F

2
)
(%). (3.11)

Analogously, we obtain

1
εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)](
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(ῡ)

χ2(ῡ)
Υ1(ῡ)

F (ῡ)G(ῡ)dῡ

≥
1

εϕΓ(ϕ)

%∫
0

exp
[ε − 1
ε

(
Λ(%) − Λ(ῡ)

)](
Λ(%) − Λ(ῡ)

)ϕ−1
Λ′(ῡ)G2(ῡ)dῡ,

from which one has (
ΛJ

ε,ζ
0+,%

χ2FG

Υ1

)
(%) ≥

(
ΛJ

ε,ζ
0+,%G

2
)
(%). (3.12)

Multiplying (3.11) and (3.12), we get the desired inequality (3.10). �

Some special casesof Theorem 3.3 are presented as follows.

Corollary 9. For ε ∈ (0, 1], ϕ, ζ ∈ C with<(ϕ) > 0,<(ζ) > 0 and let there are two positive integrable
functions F and G defined on [0,∞). Suppose that a positive monotone function Λ with continuous
derivative defined on [0,∞) having Λ(0) = 0. Assume that there exist four positive integrable functions
Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (I), then the following inequality holds:(

ΛJ
ε,ϕ
0+,%F

2)(%)
(

ΛJ
ε,ζ
0+,%G

2)(%)(
ΛJ

ε,ζ
0+,%FG

)
(%)

(
ΛJ

ε,ϕ
0+,%FG

)
(%)
≤

QR
qr

.

(I) If we choose Λ(υ) = υ, then we have a new result for ̂GPFIO.

Corollary 10. For ε ∈ (0, 1], ϕ, ζ ∈ C with <(ϕ) > 0,<(ζ) > 0 and let there are two positive
integrable functions F and G defined on [0,∞). Assume that there exist four positive integrable
functions Υ1,Υ2, χ1 and χ2 on [0,∞) satisfying condition (I), then the following inequality holds:(

J
ε,ϕ
0+,%

Υ2FG

χ1

)
(%)

(
J

ε,ζ
0+,%

χ2FG

Υ1

)
(%) ≥

(
J

ε,ϕ
0+,%F

2)(%)
(
J

ε,ζ
0+,%G

2)(%).

Remark 6. If we choose Λ(υ) = υ along with ε = 1 then Theorem 3.3 reduces to Lemma 3.4 in [53].
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4. Conclusions

The main objective of this paper determining weighted and extended Čebyšev functionals within
the Hilfer- ̂GPFIO, which is quite useful in deriving nonlinear-differentiable problems in fractional
calculus. We have derived several generalizations that are little different from the existing research
results. Additionally, the newly proposed operator is the generalization of several existing operators
such as generalized Riemann-Liouville, Riemann-Liouville, generalized proportional fractional,
Hadamard and Conformable fractional integral operators, but they are unified when the
proportionality index ε = 1. To have a better understanding of the method, we discussed the earlier
results proposed by Dhamani et al. [31, 32], Elezovic [58] and Ntouyas [53]. The findings
demonstrate that the suggested scheme is enormously imperative and computationally attractive to
deal with analogous types of differential equations. As a result, the innovative practices attained in the
contemporary research can be extended to achieve analytical solutions of other image processing
familiarized in diverse mechanism circulated presently associated with high-dimensional fractional
equations [59, 60].
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