In this paper, we prove several new integral inequalities for the $ k $-Hilfer fractional derivative operator, which is a fractional calculus operator. As a result, we have a whole new set of fractional integral inequalities. For the generalized fractional derivative, we also use Young's inequality to find new forms of inequalities. Such conclusions for this novel and generalized fractional derivative are extremely useful and valuable in the domains of differential equations and fractional differential calculus, both of which have a strong connections to real-world situations. These findings may stimulate additional research in a variety of fields of pure and applied sciences.
Citation: Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad. Some new Grüss inequalities associated with generalized fractional derivative[J]. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010
In this paper, we prove several new integral inequalities for the $ k $-Hilfer fractional derivative operator, which is a fractional calculus operator. As a result, we have a whole new set of fractional integral inequalities. For the generalized fractional derivative, we also use Young's inequality to find new forms of inequalities. Such conclusions for this novel and generalized fractional derivative are extremely useful and valuable in the domains of differential equations and fractional differential calculus, both of which have a strong connections to real-world situations. These findings may stimulate additional research in a variety of fields of pure and applied sciences.
[1] | T. Akman, B. Yildiz, D. Baleanu, New discretization of Caputo-Fabrizio derivative, Comput. Appl. Math., 37 (2018), 3307–3333. https://doi.org/10.1007/s40314-017-0514-1 doi: 10.1007/s40314-017-0514-1 |
[2] | G. A. Anastassiou, Opial type inequalities involving fractional derivatives of two functions and applications, Comput. Math. Appl., 48 (2004), 1701–1731. https://doi.org/10.1016/j.camwa.2003.08.013 doi: 10.1016/j.camwa.2003.08.013 |
[3] | G. A. Anastassiou, Fractional differentiation inequalities, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-98128-4 |
[4] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, Hackensack, 2012. |
[5] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192. https://doi.org/10.48550/arXiv.math/0405596 doi: 10.48550/arXiv.math/0405596 |
[6] | G. Grüss, Uber das maximum des absoluten Betrages $\frac{1}{b-a}\int\limits_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}\int\limits_{a}^{b}f(x)dx \int\limits_{a}^{b}g(x)dx$, Math. Z., 39 (1935), 215–226. |
[7] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co. Pte. Ltd., Singapore, 2000. |
[8] | S. Iqbal, S. Ahmad, M. A. Khan, M. Samraiz, On some new Gruss inequalities concerning to Caputo k-fractional derivative, Punjab Univ. J. Math., 52 (2020), 17–29. |
[9] | F. Jarad, T. Abdeljawad, B. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27 |
[10] | U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[11] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, New York-London, 2006. |
[12] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010. |
[13] | N. Minculete, L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities, J. Inequal. Appl., 2014 (2014), 119. https://doi.org/10.1186/1029-242X-2014-119 doi: 10.1186/1029-242X-2014-119 |
[14] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993. |
[15] | D. S. Oliveira, E. Capelas de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8 |
[16] | S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Equ., 2020 (2020), 203. https://doi.org/10.1186/s13662-020-02644-7 doi: 10.1186/s13662-020-02644-7 |
[17] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, Switzerland, 1993. |
[18] | J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014). https://doi.org/10.1155/2014/869434 |