Main aim of the current study is to examine the outcomes of nonlinear partial modified Degasperis-Procesi equation of arbitrary order by using two analytical methods. Both methods are based on homotopy and a novel adjustment with generalized Laplace transform operator. Nonlinear terms are handled by using He's polynomials. The fractional order modified Degasperis-Procesi (FMDP) equation, is capable to describe the nonlinear aspects of dispersive waves. The Katugampola derivative of fractional order in the caputo type is employed to model this problem. The numerical results and graphical representation demonstrate the efficiency and accuracy of applied techniques.
Citation: Jagdev Singh, Arpita Gupta. Computational analysis of fractional modified Degasperis-Procesi equation with Caputo-Katugampola derivative[J]. AIMS Mathematics, 2023, 8(1): 194-212. doi: 10.3934/math.2023009
Main aim of the current study is to examine the outcomes of nonlinear partial modified Degasperis-Procesi equation of arbitrary order by using two analytical methods. Both methods are based on homotopy and a novel adjustment with generalized Laplace transform operator. Nonlinear terms are handled by using He's polynomials. The fractional order modified Degasperis-Procesi (FMDP) equation, is capable to describe the nonlinear aspects of dispersive waves. The Katugampola derivative of fractional order in the caputo type is employed to model this problem. The numerical results and graphical representation demonstrate the efficiency and accuracy of applied techniques.
[1] | A. Degasperis, M. Procesi, Asymptotic integrability, In: Symmetry and pertubation theory, Singapore: World Scientific, 1999, 23–37. |
[2] | J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative, Chaos Soliton. Fract., 140 (2020), 110127. https://doi.org/10.1016/j.chaos.2020.110127 doi: 10.1016/j.chaos.2020.110127 |
[3] | J. Singh, H. K. Jassim, D. Kumar, An efficient computational technique for local fractional Fokker Planck equation, Physica A, 555 (2020), 124525. https://doi.org/10.1016/j.physa.2020.124525 doi: 10.1016/j.physa.2020.124525 |
[4] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1998. |
[5] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[6] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[7] | B. G. Zhang, S. Y. Li, Z. R. Liu, Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations, Phys. Lett. A, 372 (2008), 1867–1872. https://doi.org/10.1016/j.physleta.2007.10.072 doi: 10.1016/j.physleta.2007.10.072 |
[8] | M. A. Yousif, B. A. Mahmood, F. H. Easif, A new analytical study of modified Camassa-Holm and Degasperis-procesi equations, Am. J. Comput. Math., 5 (2015), 267-273. https://doi.org/10.4236/ajcm.2015.53024 doi: 10.4236/ajcm.2015.53024 |
[9] | P. K. Gupta, M. Singh, A. Yildirim, Approximate analytical solution of the time-fractional Camassa-Holm, modified Camassa-Holm and Degasperis-Procesi equations by homotopy perturbation method, Sci. Iran. A, 23 (2016), 155–165. |
[10] | A. M. Abourabia, I. M. Soliman, Analytical solutions of the Camassa-Holm, Degasperis-Procesi equation and phase plane analysis, AJMS, 5 (2021), 9–19. https://doi.org/10.22377/ajms.v5i30379 doi: 10.22377/ajms.v5i30379 |
[11] | V. P. Dubey, R. Kumar, J. Singh, D. Kumar, An efficient computational technique for time-fractional modofied Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves, J. Ocean Eng. Sci., 6 (2021), 30–39. https://doi.org/10.1016/j.joes.2020.04.006 doi: 10.1016/j.joes.2020.04.006 |
[12] | J. Singh, D. Kumar, D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler type kernel, Int. J. Biomath., 13 (2020), 2050010. https://doi.org/10.1142/S1793524520500102 doi: 10.1142/S1793524520500102 |
[13] | J. Singh, A. Ahmadian, S. Rathore, D. Kumar, D. Baleanu, M. Salimi, et al., An efficient computational approach for local fractional Poisson equation in fractal media, Numer. Meth. Part. D. E., 37 (2021), 1439–1448. https://doi.org/10.1002/num.22589 doi: 10.1002/num.22589 |
[14] | A. Goswami, Sushila, J. Singh, D. Kumar, Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occuring in multi-component plasmas, AIMS Math., 5 (2020), 2346–2368. https://doi.org/10.3934/math.2020155 doi: 10.3934/math.2020155 |
[15] | M. A. El Tawil, S. N. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech., 8 (2012), 51–75. |
[16] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039 |
[17] | J. H. He, Homotopy perturbation technique, Comput. Method. Appl. M., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[18] | A. Ghorbani, J. Saberi-Nadjafi, He's homotopy perturbation method for calculating Adomian polynomials, Int. J. Nonlin. Sci. Num., 8 (2007), 229–232. https://doi.org/10.1515/IJNSNS.2007.8.2.229 doi: 10.1515/IJNSNS.2007.8.2.229 |
[19] | S. Thanompolkrang, W. Sawangtong, P. Sawangtong, Application of the generalized laplace homotopy perturbation method to time-fractional Black-Scholes equations based on the Katugampola fractional derivative in Caputo type, Computation, 9 (2021), 33. https://doi.org/10.3390/computation9030033 doi: 10.3390/computation9030033 |
[20] | R. Zafar, M. Ur-Rehman, M. Shams, On caputo modification of Hadamard type fractional derivative and fractional Taylor series, Adv. Differ. Equ., 2020 (2020), 219. https://doi.org/10.1186/s13662-020-02658-1 doi: 10.1186/s13662-020-02658-1 |
[21] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Frartional differential equations with dependence on the Caputo-Katigampola derivative, J. Comput. Nonlinear Dynam., 11 (2016), 061017. https://doi.org/10.1115/1.4034432 doi: 10.1115/1.4034432 |
[22] | F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1 (2018), 88–98. |
[23] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[24] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[25] | Z. Odibat, S. A. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems, Math. Method. Appl. Sci., 38 (2015), 991–1000. https://doi.org/10.1002/mma.3136 doi: 10.1002/mma.3136 |
[26] | I. K. Argyros, Convergence and applications of Newton-type iterations, New York: Springer-Verlag, 2008. https://doi.org/10.1007/978-0-387-72743-1 |
[27] | A. A. Magrenan, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248 (2014), 215–224. https://doi.org/10.1016/j.amc.2014.09.061 doi: 10.1016/j.amc.2014.09.061 |