Research article Special Issues

Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations

  • This paper focuses on novel approaches to finding solitary wave (SW) solutions for the modified Degasperis-Procesi and fractionally modified Camassa-Holm equations. The study presents two innovative methodologies: the Yang transformation decomposition technique and the homotopy perturbation transformation method. These methods use the Caputo sense fractional order derivative, the Yang transformation, the adomian decomposition technique, and the homotopy perturbation method. The inquiry effectively solves the fractional Camassa-Holm and Degasperis-Procesi equations, which also provides a detailed numerical and graphical comparison of the solutions found. The results, which include accurate solutions, derived solutions, and absolute error displayed in tabular style, demonstrate the effectiveness of the suggested procedures. These procedures are iterative, which results in several answers. The estimated absolute error attests to the correctness and simplicity of these solutions. Especially in plasma physics, these approaches may be expanded to handle various linear and nonlinear physical issues, including the evolution equations controlling nonlinear waves.

    Citation: Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan. Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations[J]. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318

    Related Papers:

    [1] Jagdev Singh, Arpita Gupta . Computational analysis of fractional modified Degasperis-Procesi equation with Caputo-Katugampola derivative. AIMS Mathematics, 2023, 8(1): 194-212. doi: 10.3934/math.2023009
    [2] Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061
    [3] Yunxi Guo, Ying Wang . The Cauchy problem to a gkCH equation with peakon solutions. AIMS Mathematics, 2022, 7(7): 12781-12801. doi: 10.3934/math.2022707
    [4] Rasool Shah, Abd-Allah Hyder, Naveed Iqbal, Thongchai Botmart . Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis. AIMS Mathematics, 2022, 7(11): 19846-19864. doi: 10.3934/math.20221087
    [5] Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan . Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations. AIMS Mathematics, 2023, 8(11): 27775-27819. doi: 10.3934/math.20231422
    [6] Zheng Dou, Kexin Luo . Global weak solutions of nonlinear rotation-Camassa-Holm model. AIMS Mathematics, 2023, 8(7): 15285-15298. doi: 10.3934/math.2023781
    [7] Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Numerical analysis of fractional heat transfer and porous media equations within Caputo-Fabrizio operator. AIMS Mathematics, 2023, 8(11): 26543-26560. doi: 10.3934/math.20231356
    [8] Abdul Hamid Ganie, Fatemah Mofarreh, Adnan Khan . A novel analysis of the time-fractional nonlinear dispersive K(m, n, 1) equations using the homotopy perturbation transform method and Yang transform decomposition method. AIMS Mathematics, 2024, 9(1): 1877-1898. doi: 10.3934/math.2024092
    [9] Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah . Evaluation of fractional-order equal width equations with the exponential-decay kernel. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949
    [10] Md. Nurul Islam, Md. Asaduzzaman, Md. Shajib Ali . Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics. AIMS Mathematics, 2020, 5(1): 26-41. doi: 10.3934/math.2020003
  • This paper focuses on novel approaches to finding solitary wave (SW) solutions for the modified Degasperis-Procesi and fractionally modified Camassa-Holm equations. The study presents two innovative methodologies: the Yang transformation decomposition technique and the homotopy perturbation transformation method. These methods use the Caputo sense fractional order derivative, the Yang transformation, the adomian decomposition technique, and the homotopy perturbation method. The inquiry effectively solves the fractional Camassa-Holm and Degasperis-Procesi equations, which also provides a detailed numerical and graphical comparison of the solutions found. The results, which include accurate solutions, derived solutions, and absolute error displayed in tabular style, demonstrate the effectiveness of the suggested procedures. These procedures are iterative, which results in several answers. The estimated absolute error attests to the correctness and simplicity of these solutions. Especially in plasma physics, these approaches may be expanded to handle various linear and nonlinear physical issues, including the evolution equations controlling nonlinear waves.



    υ: Independent variable

    ı: Time

    ζ(ı,υ): Dependent function representing the physical quantity

    ς: Fractional order

    Y: Shehu transform

    Y1: Inverse Shehu transform

    ϵ: Perturbation parameter

    Fractional calculus (FC) offers a practical and straightforward approach to obtaining specific information from different equations. This dynamic field of mathematics generalizes the standard integer order to a fractional order, resulting in a vast array of mathematical models [1,2,3,4,5,6]. In recent years, fractional differential equations (FDEs) have become a popular area of research for various science and engineering applications. There are several fundamental fractional derivative concepts, such as the Liouville-Caputo, Riemann-Liouville, Caputo-Fabrizio, Atangana-Baleanu, and Hadamard derivatives [7,8,9,10,11]. The fractional Riemann-Liouville derivative allows the inclusion of initial sources expressed through fractional integrals and derivatives, while the fractional Caputo derivatives only accept conventional boundaries and initial conditions. Nonlinear problems have been applied in different fields, including (non)linear waves in plasmas, hydrology, nuclear engineering, astrophysics, and meteorology [12,13,14,15,16,17,18].

    Mathematicians have become increasingly interested in fractional partial differential equations (FPDEs) in recent years due to their numerous applications in engineering, applied sciences, biology, mathematical physics, solid-state materials science, neurology, geophysics, plasma physics, electrochemistry, physiological scaling laws, chemical physics, dielectric behavior, quantum systems, financial mathematics, fractional dynamics, electromagnetics and quantum computing. Few of the other implementations of fractional partial differential equations can be discovered in viscoplastic and viscoelastic flows [19], spherical flames [20], continuum mechanics [21], image processing [22], wave propagation [23], entropy [24], anomalous diffusion [25], groundwater containment transport [26], turbulent flow [27] and so on [1,2,3].

    FC has piqued the interest of academics because of its practical applicability in various real-world challenges. Mathematicians have worked on discovering numerical and analytical solutions to FPDEs and similar systems to investigate the problem better. To address FPDEs, researchers have expended significant effort in inventing different approaches, resulting in a well-studied field [31,32,33,34,35]. The findings of these investigations contribute to a better understanding of the dynamics of natural systems. Scholars have refined their approaches to solving FPDEs over time, yielding a variety of effective methods such as the Sine-Gordon expansion technique, Yang transformation decomposition technique, finite element method, variational iteration method, natural transform decomposition method, first integral method, finite volume methods, generalized Kudryashov method, and many others [36,37,38,39,40,41,42,43,44,45]. A general modified kappa-equation with the following type, i.e., a family that includes significant physical equations, is considered in this paper [46]:

    ςζ(β,υ)υςυ(2ζ(β,υ)β2)+(κ+1)ζ2(β,υ)ζ(β,υ)βκζ(β,υ)β(2ζ(β,υ)β2)ζ(β,υ)3ζ(β,υ)β3=0. (1.1)

    For κ=3, the modified Degasperis-Procesi (mDP) equation is obtained

    ςζ(β,υ)υςυ(2ζ(β,υ)β2)+4ζ2(β,υ)ζ(β,υ)β3ζ(β,υ)β(2ζ(β,υ)β2)ζ(β,υ)3ζ(β,υ)β3=0. (1.2)

    In Eq (1.1) for κ=2, the result is the manifestation of the modified Camassa-Holm (mCH) equation

    ςζ(β,υ)υςυ(2ζ(β,υ)β2)+3ζ2(β,υ)ζ(β,υ)β2ζ(β,υ)β(2ζ(β,υ)β2)ζ(β,υ)3ζ(β,υ)β3=0. (1.3)

    The fractional modified Camassa-Holm (mCH) and modified Degasperis-Procesi (mDP) equations are fascinating advances in the realm of nonlinear partial differential equations (PDEs) that help us comprehend wave dynamics and soliton behavior. These equations have sparked substantial attention because of their ability to account for anomalous diffusion and dispersive effects, which classical models usually overlook. The fractional mCH equation, a refinement of the conventional Camassa-Holm equation, uses fractional derivatives to simulate wave propagation more precisely. The features of this equation, such as its well-posedness, conservation laws and the behavior of solitary wave solutions, have been widely researched in the scientific literature. This anomalous diffusion feature has been found in a variety of physical systems, including turbulent fluid flow and transport processes [47].

    To capture complicated dispersive effects, the modified mDP equation, a version of the classical Degasperis-Procesi equation, additionally incorporates fractional derivatives. This equation's integrability, symmetries and wave propagation features have all been examined. In wave dynamics, nonlinearity, dispersion and fractional calculus interact extensively. The appearance of these fractional alterations has opened up new areas for research into this relationship. Researchers have used a variety of analytical and computational approaches to examine the characteristics of solutions, the integrability of these equations, and their application in simulating real-world occurrences.

    The study of fractional PDEs, as exemplified by the fractional mCH and modified mDP equations, demonstrates the profound impact fractional calculus has on enhancing the predictive ability of mathematical models in numerous scientific fields. By considering fractional derivatives, researchers obtain a deeper understanding of the complex behaviors exhibited by waves and solitons in various physical systems [48,49].

    The Yang transformation, a significant concept in soliton theory and integrable systems, is a potent mathematical tool to derive solutions for certain nonlinear partial differential equations (PDEs). It establishes a connection between various remedies, frequently transforming one into another. This transformation is particularly relevant in the context of soliton equations, where it can systematically produce multi-soliton solutions by relating them to simpler seed solutions. The Yang transformation has applications in numerous disciplines, such as fluid dynamics, plasma physics, and mathematical physics, contributing to a greater comprehension of complex nonlinear phenomena and their mathematical representations [50,51,52]. In this study, two novel schemes, the YTDM and HPTM, are combined with the YT to approximate the fractional mDP and mCH problems. The proposed methods offer high accuracy while requiring less computational work than other techniques. This work's structure is as follows: We give a few basic aspects of calculus theory in Section 2. Sections 3 and 4 provide the HPTM and YTDM formulations for obtaining the general solution. In Section 5, using a few numerical examples and comparisons to the exact solution, we show the viability and effectiveness of both approaches. Finally, Section 6 contains the conclusion.

    Definition 1.

    The fractional Caputo operator of order ς is written as [53]

     Dςυζ(β,υ)=1Γ(kς)υ0(υȷ)kς1ζ(k)(β,ȷ)dȷ,k1<ςk,kN. (2.1)

    Definition 2.

    The YT for ζ(υ) is defined as [53]

    Y{ζ(υ)}=M(u)=0eυuζ(υ)dυ,  υ>0, (2.2)

    provided the integral exists for some "u".

    And the inverse of Yang transform is

    Y1{M(u)}=ζ(υ). (2.3)

    Definition 3.

    The inverse of YT is given by [53]

    Y1[Y(u)]=ζ(υ)=12πις+ιςιζ(1u)euυudu=Σ  residues  of  ζ(1u)euυu   ς>0.

    Definition 4.

    The YT of the fractional derivative is given by [53]

    Y{ζς(υ)}=M(u)uςn1k=0ζk(0)uς(k+1),  n1<ςn,    n=1,2,3,. (2.4)

    Consider the general fractional partial differential equation

    Dςυζ(β,υ)=P1[β]ζ(β,υ)+R1[β]ζ(β,υ),  0<ς1, (3.1)

    the initial condition (IC)

    ζ(0,υ)=ξ(υ).

    Let Dςυζ(β,υ) denote the Caputo fractional derivative of order ς with respect to υ, and let P1 and R1 represent the linear and nonlinear terms, respectively.

    Using Yang transform in the above equation

     Y[Dςυζ(β,υ)]=Y[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)], (3.2)
    1uς{M(u)uζ(β,0)}=Y[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)]. (3.3)

    By utilizing the differential characteristic of the YT, we obtain

    M(u)=uζ(β,0)+uςY[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)]. (3.4)

    By utilizing the inverse of the Yang transform, we get

    ζ(β,υ)=ζ(β,0)+Y1[uςY[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)]]. (3.5)

    Construct a homotopy operator that contains a small parameter ϵ and ϵ[0,1] to create a family of related equations, starting from a simple linear equation and gradually transitioning to the transformed nonlinear equation. This operator effectively bridges the gap between linear and nonlinear problem.

    ζ(β,υ)=k=0ϵkζk(β,υ). (3.6)

    The nonlinear components in Eq (3.1) is defined as

     R1[β]ζ(β,υ)=k=0ϵkHk(ζ), (3.7)

    The technique obtain polynomial is described in Ref [53]

    Hk(ζ0,ζ1,...,ζn)=1Γ(n+1)Dkϵ[R1(k=0ϵiζi)]ϵ=0, (3.8)

    where Dkϵ=kϵk.

    By combining Eqs (3.6) and (3.8) with Eq (3.5), we obtain

     k=0ϵkζk(β,υ)=ζ(β,0)+ϵ×(Y1[uςY{P1k=0ϵkζk(β,υ)+k=0ϵkHk(ζ)}]). (3.9)

    By analyzing the correlation of the coefficient of ϵ, we get

     ϵ0:ζ0(β,υ)=ζ(β,0),ϵ1:ζ1(β,υ)=Y1[uςY(P1[β]ζ0(β,υ)+H0(ζ))],ϵ2:ζ2(β,υ)=Y1[uςY(P1[β]ζ1(β,υ)+H1(ζ))],...ϵk:ζk(β,υ)=Y1[uςY(P1[β]ζk1(β,υ)+Hk1(ζ))],  k>0,kN. (3.10)

    Therefore, the approximation of Eq (3.1) takes the following series form

     ζ(β,υ)=limMMk=1ζk(β,υ). (3.11)

    Consider the general fractional partial differential equation

    Dςυζ(β,υ)=P1[β]ζ(β,υ)+R1[β]ζ(β,υ),  0<ς1, (4.1)

    with the IC

    ζ(0,υ)=ξ(υ).

    By performing the YT, we get

    Y[Dςυζ(β,υ)]=Y[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)],1uς{M(u)uζ(β,0)}=Y[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)]. (4.2)

    Utilizing the distinguishing characteristic of the YT, we acquire

    M(u)=uζ(β,0)+uςY[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)], (4.3)

    By utilizing the inverse of the Yang transform method, we have

    ζ(β,υ)=ζ(β,0)+Y1[uςY[P1[β]ζ(β,υ)+R1[β]ζ(β,υ)]. (4.4)

    The solution of ζ(β,υ) is given as

    ζ(β,υ)=m=0ζm(β,υ). (4.5)

    The nonlinear components in Eq (4.1) is expressed as

    R1(β,υ)=m=0Am(ζ), (4.6)

    with

    Am(ζ0,ζ1,ζ2,,ζm)=1m![mm{R1(m=0mζm)}]=0,  m=0,1,2, (4.7)

    By combine source of Eqs (4.5) and (4.7) in Eq (4.4), we obtain as

    m=0ζm(β,υ)=ζ(β,0)+Y1uς[Y{P1(m=0ζm(β,υ))+m=0Am(ζ)}]. (4.8)

    Thus, we get

    ζ0(β,υ)=ζ(β,0), (4.9)
    ζ1(β,υ)=Y1[uςY{P1(ζ0)+A0}],
    ζm+1(β,υ)=Y1[uςY{P1(ζm)+Am}].

    Example 5.1.

    Considering the following fractional mDP equation

    ςζ(β,υ)υςυ(2ζ(β,υ)β2)+4ζ2(β,υ)ζ(β,υ)β3ζ(β,υ)β(2ζ(β,υ)β2)ζ(β,υ)3ζ(β,υ)β3=0, (5.1)

    with the IC

    ζ(β,0)=158sech2(β2).

    Applying the YT, we get

     Y(ςζυς)=Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.2)

    By utilizing the differentiating aspect of the YT, we have

     1uς{M(u)uζ(β,0)}=Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.3)
     M(u)=uζ(β,0)+uςY[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.4)

    By utilizing the inverse of the YT method, we have

     ζ(β,υ)=ζ(β,0)+Y1[uς{Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}],ζ(β,υ)=(158sech2(β2))+Y1[uς{Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}]. (5.5)

    Using of the HPM, we have

    k=0ϵkζk(β,υ)=(158sech2(β2))+(Y1[uςY[(k=0ϵkυ(2ζk(β,υ)β2)4k=0ϵkζ2k(β,υ)k=0ϵkζk(β,υ)β)+3k=0ϵkζk(β,υ)βk=0ϵk2ζk(β,υ)β2+k=0ϵkζk(β,υ)k=0ϵk3ζk(β,υ)β3]]). (5.6)

    By comparing coefficient of ϵ on both sides of Eq (5.6), we get

     ϵ0:ζ0(β,υ)=158sech2(β2),ϵ1:ζ1(β,υ)=Y1(uςY[υ(2ζ0(β,υ)β2)4ζ20(β,υ)ζ0(β,υ)β+3ζ0(β,υ)β(2ζ0(β,υ)β2)+ζ0(β,υ)3ζ0(β,υ)β3])=450csch5(β)sinh6(β2)υςΓ(ς+1)

    Finally, the series form solution is given as follows:

     ζ(β,υ)=ζ0(β,υ)+ζ1(β,υ)+ζ(β,υ)=158sech2(β2)450csch5(β)sinh6(β2)υςΓ(ς+1)+

    A.Implementation of decomposition method

    Applying the YT, we get

    Y{ςζυς}=Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.7)

    By utilizing the differentiating property of the Yang transform is given as

    1uς{M(u)uζ(β,0)}=Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.8)
    M(u)=uζ(β,0)+uςY[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.9)

    Utilizing the inverse of the Yang transform method, we possess

     ζ(β,υ)=ζ(β,0)+Y1[uς{Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}],ζ(β,υ)=(158sech2(β2))+Y1[uς{Y[υ(2ζ(β,υ)β2)4ζ2(β,υ)ζ(β,υ)β+3ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}]. (5.10)

    The series form solution is defined as

     ζ(β,υ)=m=0ζm(β,υ), (5.11)

    where ζ2(β,υ)ζ(β,υ)β=m=0Am, ζ(β,υ)β(2ζ(β,υ)β2)=m=0Bm and ζ(β,υ)3ζ(β,υ)β3=m=0Cm are the Adomian polynomials, which shows the nonlinear terms, and

    m=0ζm(β,υ)=ζ(β,0)Y1[uς{Y[υ(2ζ(β,υ)β2)4m=0Am+3m=0Bm+m=0Cm]}],m=0ζm(β,υ)=(158sech2(β2))Y1[uς{Y[υ(2ζ(β,υ)β2)4m=0Am+3m=0Bm+m=0Cm]}]. (5.12)

    Comparing both sides of Eq (5.12) is defined as

    ζ0(β,υ)=158sech2(β2),

    put m=0 in Eq (5.12)

    ζ1(β,υ)=450csch5(β)sinh6(β2)υςΓ(ς+1).

    Finally, the series form solution is defined as

    ζ(β,υ)=m=0ζm(β,υ)=ζ0(β,υ)+ζ1(β,υ)+.
    ζ(β,υ)=158sech2(β2)450csch5(β)sinh6(β2)υςΓ(ς+1)+.

    Then, ς equal to 1, the solution is obtained as

    ζ(β,υ)=158[sech212(β52υ)]. (5.13)

    Example 5.2.

    Fractional modified Camassa-Holm (mCH) equation can be expressed as follows:

    ςζ(β,υ)υςυ(2ζ(β,υ)β2)+3ζ2(β,υ)ζ(β,υ)β2ζ(β,υ)β(2ζ(β,υ)β2)ζ(β,υ)3ζ(β,υ)β3=0 (5.14)

    with the IC

    ζ(β,0)=2sech2(β2).

    By applying the YT, we get

     Y(ςζυς)=Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.15)

    By using the differential property of the Yang transform, given as

     1uς{M(u)uζ(β,0)}=Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.16)
     M(u)=uζ(β,0)+uςY[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.17)

    Applying inverse Yang transform is defined

     ζ(β,υ)=ζ(β,0)+Y1[uς{Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}],ζ(β,υ)=(2sech2(β2))+Y1[uς{Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}]. (5.18)

    With the help of HPM technique, is expressed

     k=0ϵkζk(β,υ)=(2sech2(β2))+(Y1[uςY[(k=0ϵkυ(2ζk(β,υ)β2)3k=0ϵkζ2k(β,υ)k=0ϵkζk(β,υ)β)+2k=0ϵkζk(β,υ)βk=0ϵk2ζk(β,υ)β2+k=0ϵkζk(β,υ)k=0ϵk3ζk(β,υ)β3]]). (5.19)

    By examining the relationship between the coefficient of ϵ and other factors, we can determine the correlation.

     ϵ0:ζ0(β,υ)=2sech2(β2),ϵ1:ζ1(β,υ)=Y1(uςY[υ(2ζ0(β,υ)β2)3ζ20(β,υ)ζ0(β,υ)β+2ζ0(β,υ)β(2ζ0(β,υ)β2)+ζ0(β,υ)3ζ0(β,υ)β3])=384csch5(β)sinh6(β2)υςΓ(ς+1).

    The series form solution is achieved as

     ζ(β,υ)=ζ0(β,υ)+ζ1(β,υ)+ζ(β,υ)=2sech2(β2)384csch5(β)sinh6(β2)υςΓ(ς+1)+

    B. Application of decomposition method

    By using the YT, we get

    Y{ςζυς}=Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.20)

    By utilizing the distinct characteristic of the YT, the following result is obtained

    1uς{M(u)uζ(β,0)}=Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3], (5.21)
    M(u)=uζ(β,0)+uςY[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]. (5.22)

    By utilizing inverse of the YT, we get

     ζ(β,υ)=ζ(β,0)+Y1[uς{Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}],ζ(β,υ)=(2sech2(β2))+Y1[uς{Y[υ(2ζ(β,υ)β2)3ζ2(β,υ)ζ(β,υ)β+2ζ(β,υ)β(2ζ(β,υ)β2)+ζ(β,υ)3ζ(β,υ)β3]}]. (5.23)

    The series form solution is given as

     ζ(β,υ)=m=0ζm(β,υ) (5.24)

    with ζ2(β,υ)ζ(β,υ)β=m=0Am, ζ(β,υ)β(2ζ(β,υ)β2)=m=0Bm and ζ(β,υ)3ζ(β,υ)β3=m=0Cm are the Adomian polynomials which shows the nonlinear terms, and

    m=0ζm(β,υ)=ζ(β,0)Y1[uς{Y[υ(2ζ(β,υ)β2)3m=0Am+2m=0Bm+m=0Cm]}],m=0ζm(β,υ)=(2sech2(β2))Y1[uς{Y[υ(2ζ(β,υ)β2)3m=0Am+2m=0Bm+m=0Cm]}]. (5.25)
    ζ0(β,υ)=2sech2(β2),

    put m=0 in the above equation

    ζ1(β,υ)=384csch5(β)sinh6(β2)υςΓ(ς+1).

    Finally, the series form result is defined as

    ζ(β,υ)=m=0ζm(β,υ)=ζ0(β,υ)+ζ1(β,υ)+.
    ζ(β,υ)=2sech2(β2)384csch5(β)sinh6(β2)υςΓ(ς+1)+.

    The exact result is

    ζ(β,υ)=2sech2(βυ2). (5.26)

    In Figure 1, we present the graphical depiction of the homotopy perturbation transformation method (HPTM) and Yang transform-decomposition method (YTDM) for the solution ζ(β,υ) in Example 5.1. The plot showcases the precision achieved at ς=1, revealing the accurate resolution achieved through the combined methodology. Moving to Figure 2, we illustrate the outcomes of the HPTM/YTDM solutions for ζ(β,υ) across various values of ς in Example 5.1 of the Degasperis-Procesi equation. The graph provides a comprehensive view of how the solutions evolve and adapt as ς changes, offering insights into the behavior of the equation.

    Figure 1.  The graphical representation of the HPTM/YTDM and the precise resolution at ς=1 for ζ(β,υ) of Example 5.1.
    Figure 2.  The graphical representation of the the HPTM/YTDM solutions for ζ(β,υ) at different ς of Example 5.1.

    In Figure 3, we delve into the graphical representation of the HPTM/YTDM approach and its precise resolution at ς=1 for ζ(β,υ) in Example 5.2. The visualization underscores the accuracy achieved through the combined method, emphasizing its effectiveness. Lastly, in Figure 4, we explore the HPTM/YTDM solutions for ζ(β,υ) in Example 5.2 of the Camassa-Holm equation. The graph showcases the diverse solutions obtained at different values of ς, providing a visual insight into the equation's response to varying parameters.

    Figure 3.  The graphical representation of the HPTM/YTDM and the precise resolution at ς=1 for ζ(β,υ) of Example 5.2.
    Figure 4.  The graphical representation of the HPTM/YTDM solutions for ζ(β,υ) at different ς of Example 5.2.

    These graphical representations collectively demonstrate the efficacy of the homotopy perturbation transformation method (HPTM) and Yang transform-decomposition method (YTDM) in solving fractional partial differential equations. They offer a visual narrative of how the methodologies handle different examples of Degasperis-Procesi and Camassa-Holm equations, shedding light on the intricate dynamics of the equations and the effectiveness of the proposed approach.

    In conclusion, the study delved into the intricate dynamics of the Degasperis-Procesi and Camassa-Holm equations, two fundamental nonlinear partial differential equations with wide-ranging applications. The utilization of the Yang transform emerged as a pivotal mathematical tool, facilitating the transformation between solutions and shedding light on the behavior of these equations. Furthermore, the investigation incorporated the Adomian decomposition method, a versatile technique for solving nonlinear differential equations, as well as series solutions to provide insightful approximations. Notably, the homotopy perturbation method was harnessed to tackle the challenges posed by these complex equations, offering a systematic approach to obtaining analytical solutions. Through the exploration of these methodologies, a deeper understanding of the intricate interplay between mathematical techniques and the physical phenomena described by these equations was achieved, paving the way for further advancements in the realm of nonlinear dynamics and integrable systems.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 4021).

    This work was supported by the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 4021).

    The authors declare that they have no competing interest.



    [1] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [2] B. L. Guo, X. K. Pu, F. H. Huang, Fractional partial differential equations and their numerical solutions, World Scientific, 2015. https://doi.org/10.1142/9543
    [3] J. G. Liu, X. J. Yang, L. L. Geng, X. J. Yu, On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Methods M., 19 (2022), 2250173. https://doi.org/10.1142/S0219887822501730 doi: 10.1142/S0219887822501730
    [4] M. I. Abbas, Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative, Miskolc Math. Notes, 22 (2021), 491–502. https://doi.org/10.18514/MMN.2021.3470 doi: 10.18514/MMN.2021.3470
    [5] J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/S0218348X23500330 doi: 10.1142/S0218348X23500330
    [6] S. Y. Lu, M. Z. Zhe, L. R. Yin, Z. T. Yin, X. Liu, W. F. Zheng, The multi-modal fusion in visual question answering: A review of attention mechanisms, PeerJ Comput. Sci., 9 (2023), e1440. https://doi.org/10.7717/peerj-cs.1400 doi: 10.7717/peerj-cs.1400
    [7] J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Soliton. Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
    [8] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [9] H. Fu, G. C. Wu, G. Yang, L. L. Huang, Continuous time random walk to a general fractional Fokker-Planck equation on fractal media, Eur. Phys. J-Spec. Top., 230 (2021), 3927–3933. https://doi.org/10.1140/epjs/s11734-021-00323-6 doi: 10.1140/epjs/s11734-021-00323-6
    [10] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [11] H. Yasmin, A. S. Alshehry, A. M. Saeed, R. Shah, K. Nonlaopon, Application of the q-homotopy analysis transform method to fractional-order kolmogorov and Rosenau-Hyman models within the Atangana-Baleanu operator, Symmetry, 15 (2023), 671. https://doi.org/10.3390/sym15030671 doi: 10.3390/sym15030671
    [12] C. Yang, J. S. Zhang, Z. W. Huang, Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil, Phys. Fluids, 34 (2022), 125105. https://doi.org/10.1063/5.0128169 doi: 10.1063/5.0128169
    [13] A. Akgül, S. A. Khoshnaw, Application of fractional derivative on nonlinear biochemical reaction models, Int. J. Intell. Netw., 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.0019 doi: 10.1016/j.ijin.2020.05.0019
    [14] J. Song, A. Mingotti, J. H. Zhang, L. Peretto, H. Wen, Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals, IEEE T. Tnstrum. Meas., 71 (2022), 6503504. https://doi.org/10.1109/TIM.2022.3220300 doi: 10.1109/TIM.2022.3220300
    [15] T. A. A. Ali, Z. Xiao, H. B. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 2023, 1–11. https://doi.org/10.1109/TIE.2023.3290247
    [16] C. Q. Guo, J. P. Hu, J. S. Hao, S. Celikovsky, X. M. Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions, Kybernetika, 59 (2023), 342–364. https://doi.org/10.14736/kyb-2023-3-0342 doi: 10.14736/kyb-2023-3-0342
    [17] C. Q. Guo, J. P. Hu, Y. Z. Wu, S. Celikovsky, Non-singular fixed-time tracking control of uncertain nonlinear Pure-Feedback systems with practical state constraints, IEEE T. Circuits-I, 70 (2023), 3746–3758. https://doi.org/10.1109/TCSI.2023.3291700 doi: 10.1109/TCSI.2023.3291700
    [18] Q. T. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 2023, 1–8. https://doi.org/10.1109/TAC.2023.3244151
    [19] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, In: Scientific computing in chemical engineering II, Springer, 1999,217–224. https://doi.org/10.1007/978-3-642-60185-9_24
    [20] M. D. Aloko, O. J. Fenuga, S. A. Okunuga, Solutions of some non-linear Volterra integro-differential equations of the second kind using modified variational iteration method, FUW Trends Sci. Technol. J., 4 (2019), 298–303.
    [21] F. Mainardi, Fractional calculus, In: Fractals and fractional calculus in continuum mechanics, Springer, 1997,291–348.
    [22] J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
    [23] P. L. Butzer, U. Westphal, An introduction to fractional calculus, In: Applications of fractional calculus in physics, World Scientific, 2010, 1–86. https://doi.org/10.1142/9789812817747-0001
    [24] D. Kumar, F. Tchier, J. Singh, D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. https://doi.org/10.3390/e20040259 doi: 10.3390/e20040259
    [25] J. R. Loh, A. Isah, C. Phang, Y. T. Toh, On the new properties of Caputo-Fabrizio operator and its application in deriving shifted Legendre operational matrix, Appl. Numer. Math., 132 (2018), 138–153. https://doi.org/10.1016/j.apnum.2018.05.016 doi: 10.1016/j.apnum.2018.05.016
    [26] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2018), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [27] B. A. Carreras, V. E. Lynch, G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8 (2001), 5096–5103. https://doi.org/10.1063/1.1416180 doi: 10.1063/1.1416180
    [28] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [29] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
    [30] H. Yasmin, A. S. Alshehry, A. Khan, R. Shah, K. Nonlaopon, Numerical analysis of the fractional-order Belousov-Zhabotinsky system, Symmetry, 15 (2023), 834. https://doi.org/10.3390/sym15040834 doi: 10.3390/sym15040834
    [31] H. C. Li, R. Peng, Z. A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. https://doi.org/10.1137/18M1167863 doi: 10.1137/18M1167863
    [32] H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [33] W. B. Lyu, Z. A. Wang, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 12 (2023), 336–355. https://doi.org/10.1515/anona-2022-0263 doi: 10.1515/anona-2022-0263
    [34] Q. K. Li, H. Lin, X. Tan, S. L. Du, H Consensus for multiagent-based supply chain systems under switching topology and uncertain demands, IEEE T. Syst. Man Cy-S., 50 (2020), 4905–4918. https://doi:10.1109/TSMC.2018.2884510. doi: 10.1109/TSMC.2018.2884510
    [35] B. Wang, Y. M. Zhang, W. Zhang, A composite adaptive fault-tolerant attitude control for a ouadrotor UAV with multiple uncertainties, J. Syst. Sci. Complex., 35 (2022), 81–104. https://doi.org/10.1007/s11424-022-1030-y doi: 10.1007/s11424-022-1030-y
    [36] G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method, Opt. Quant. Electron., 49 (2017), 1–10. https://doi.org/10.1007/s11082-017-1127-z doi: 10.1007/s11082-017-1127-z
    [37] A. M. Zidan, A. Khan, R. Shah, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fisher's equations with the help of analytical methods, AIMS Mathematics, 7 (2022), 18746–18766. https://doi:10.3934/math.20221031 doi: 10.3934/math.20221031
    [38] S. Alyobi, R. Shah, A. Khan, N. A. Shah, K. Nonlaopon, Fractional analysis of nonlinear boussinesq equation under Atangana-Baleanu-Caputo operator, Symmetry, 14 (2022), 2417. https://doi.org/10.3390/sym14112417 doi: 10.3390/sym14112417
    [39] A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [40] N. J. Ford, J. Y. Xiao, Y. B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. https://doi.org/10.2478/s13540-011-0028-2 doi: 10.2478/s13540-011-0028-2
    [41] M. Eslami, B. F. Vajargah, M. Mirzazadeh, A. Biswas, Application of first integral method to fractional partial differential equations, Indian J. Phys., 88 (2014), 177–184. https://doi.org/10.1007/s12648-013-0401-6 doi: 10.1007/s12648-013-0401-6
    [42] N. A. Shah, Y. S. Hamed, K. M. Abualnaja, J. D. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order kaup-kupershmidt equation within different operators, Symmetry, 14 (2022), 986. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [43] M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order cahn-hilliard and gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [44] S. Y. Lu, Y. M. Ding, M. Z. Liu, Z. T. Yin, L. R. Yin, W. F. Zheng, Multiscale feature extraction and fusion of image and text in VQA, Int. J. Comput. Int. Sys., 16 (2023), 54. https://doi.org/10.1007/s44196-023-00233-6 doi: 10.1007/s44196-023-00233-6
    [45] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [46] A. M. Wazwaz, Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations, Phys. Lett. A, 352 (2006), 500–504. https://doi.org/10.1016/j.physleta.2005.12.036 doi: 10.1016/j.physleta.2005.12.036
    [47] J. S. Kamdem, Z. J. Qiao, Decomposition method for the Camassa-Holm equation, Chaos Soliton. Fract., 31 (2007), 437–447. https://doi.org/10.1016/j.chaos.2005.09.071 doi: 10.1016/j.chaos.2005.09.071
    [48] R. Liu, Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation, Commun. Pur. Appl. Anal., 9 (2010), 77–90. https://doi.org/10.3934/cpaa.2010.9.77 doi: 10.3934/cpaa.2010.9.77
    [49] G. Omel'yanov, J. N. Rodriguez, Solitary wave solutions to a generalization of the mKdV equation, Russ. J. Math. Phys., 30 (2023), 246–256. https://doi.org/10.1134/S1061920823020103 doi: 10.1134/S1061920823020103
    [50] P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Space., 2021 (2021), 1537958. https://doi.org/10.1155/2021/1537958 doi: 10.1155/2021/1537958
    [51] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [52] M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [53] X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci., 20 (2016), 639–642. https://doi.org/10.2298/TSCI16S3639Y doi: 10.2298/TSCI16S3639Y
  • This article has been cited by:

    1. Abdulrahman B. M. Alzahrani, Ghadah Alhawael, Analytical Methods for Fractional Differential Equations: Time-Fractional Foam Drainage and Fisher’s Equations, 2023, 15, 2073-8994, 1939, 10.3390/sym15101939
    2. Azzh Saad Alshehry, A Comparative Analysis of Laplace Residual Power Series and a New Iteration Method for Fitzhugh-Nagumo Equation in the Caputo Operator Framework, 2023, 7, 2504-3110, 867, 10.3390/fractalfract7120867
    3. Özlem Kırcı, Construction of the New Wave Solutions of Modified Camassa-Holm and Degasperis-Procesi Equations with Atangana’s Conformable Derivative, 2024, 24, 2149-3367, 819, 10.35414/akufemubid.1398202
    4. Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan, Fractional-order modeling: Analysis of foam drainage and Fisher's equations, 2023, 21, 2391-5471, 10.1515/phys-2023-0115
    5. Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan, Numerical simulation and analysis of fractional-order Phi-Four equation, 2023, 8, 2473-6988, 27175, 10.3934/math.20231390
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1469) PDF downloads(83) Cited by(5)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog