Research article

On the solution of nonlinear fractional-order shock wave equation via analytical method

  • Received: 17 July 2022 Revised: 20 August 2022 Accepted: 23 August 2022 Published: 31 August 2022
  • MSC : 34A34, 35A20, 35A22, 44A10, 33B15

  • In this study, we propose a method to study fractional-order shock wave equations and wave equations arising from the motion of gases. The fractional derivative is taken in Caputo manner. The approaches we used are the combined form of the Yang transform (YT) together with the homotopy perturbation method (HPM) called homotopy perturbation Yang transform method (HPYTM) and also Yang transform (YT) with the Adomian decomposition method called Yang transform decomposition method (YTDM). The HPYTM is a combination of the Yang transform, the homotopy perturbation method and He's polynomials, whereas the YTDM is a combination of the Yang transform, the decomposition method and the Adomian polynomials. Adomian and He's polynomials are excellent tools for handling nonlinear terms. The manipulation of the recurrence relation, which generates the series solutions in a limited number of iterations, is the essential innovation we describe in this study. We give several graphical behaviors of the exact and analytical results, absolute error graphs, and tables that highly agree with one another to demonstrate the reliability of the suggested methodologies. The results we obtained by implementing the proposed approaches indicate that it is easy to implement and computationally very attractive.

    Citation: Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon. On the solution of nonlinear fractional-order shock wave equation via analytical method[J]. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061

    Related Papers:

  • In this study, we propose a method to study fractional-order shock wave equations and wave equations arising from the motion of gases. The fractional derivative is taken in Caputo manner. The approaches we used are the combined form of the Yang transform (YT) together with the homotopy perturbation method (HPM) called homotopy perturbation Yang transform method (HPYTM) and also Yang transform (YT) with the Adomian decomposition method called Yang transform decomposition method (YTDM). The HPYTM is a combination of the Yang transform, the homotopy perturbation method and He's polynomials, whereas the YTDM is a combination of the Yang transform, the decomposition method and the Adomian polynomials. Adomian and He's polynomials are excellent tools for handling nonlinear terms. The manipulation of the recurrence relation, which generates the series solutions in a limited number of iterations, is the essential innovation we describe in this study. We give several graphical behaviors of the exact and analytical results, absolute error graphs, and tables that highly agree with one another to demonstrate the reliability of the suggested methodologies. The results we obtained by implementing the proposed approaches indicate that it is easy to implement and computationally very attractive.



    加载中


    [1] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., 75 (1995), 623–635. https://doi.org/10.1002/zamm.19950750820 doi: 10.1002/zamm.19950750820
    [2] J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86–90.
    [3] J. H. He, Approximate analytic solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–68. https://doi.org/10.1016/S0045-7825(98)00108-X doi: 10.1016/S0045-7825(98)00108-X
    [4] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [5] F. Ghomanjani, S. Noeiaghdam, S. Micula, Application of transcendental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022 (2022), 1–10. https://doi.org/10.1155/2022/4303775 doi: 10.1155/2022/4303775
    [6] F. Ghomanjani, S. Noeiaghdam, Application of Said Ball curve for solving fractional differential-algebraic equations, Mathematics, 9 (2021), 1–10. https://doi.org/10.3390/math9161926 doi: 10.3390/math9161926
    [7] M. Hedayati, R. Ezzati, S. Noeiaghdam, New procedures of a fractional order model of novel coronavirus (COVID-19) outbreak via wavelets method, Axioms, 10 (2021), 1–23. https://doi.org/10.3390/axioms10020122 doi: 10.3390/axioms10020122
    [8] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [9] J. Singh, B. Ganbari, D. Kumar, D. Baleanu, Analysis of fractional model of guava for biological pest control with memory effect, J. Adv. Res., 32 (2021), 99–108. https://doi.org/10.1016/j.jare.2020.12.004 doi: 10.1016/j.jare.2020.12.004
    [10] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [11] J. H. He, A new perturbation technique which is also valid for large parameters, J. Sound Vib., 229 (2000), 1257–1263.
    [12] G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5 doi: 10.1016/0898-1221(94)90132-5
    [13] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [14] M. M. Rashidi, D. D. Ganji, S. Dinarvand, Explicit analytical solutions of the generalized Burger and Burger-Fisher equations by homotopy perturbation method, Numer. Methods Partial Differ. Equ., 25 (2009), 409–417. https://doi.org/10.1002/num.20350 doi: 10.1002/num.20350
    [15] M. M. Rashidi, D. D. Ganji, Homotopy perturbation combined with Padé approximation for solving two dimensional viscous flow in the extrusion process, Int. J. Nonlinear Sci., 7 (2009), 387–394.
    [16] A. Yildirim, An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 445–450. https://doi.org/10.1515/IJNSNS.2009.10.4.445 doi: 10.1515/IJNSNS.2009.10.4.445
    [17] S. Kumar, O. P. Singh, Numerical inversion of the Abel integral equation using homotopy perturbation method, Z. Naturforsch. A, 65 (2010), 677–682. https://doi.org/10.1515/zna-2010-8-908 doi: 10.1515/zna-2010-8-908
    [18] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform, Symmetry, 13 (2021), 1–21. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [19] S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via Novel techniques, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
    [20] M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [21] N. A. Shah, Y. S. Hamed, K. M. Abualnaja, J. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 1–23. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [22] J. Singh, A. Gupta, D. Baleanu, On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations, Alex. Eng. J., 61 (2022), 5073–5082. https://doi.org/10.1016/j.aej.2021.09.053 doi: 10.1016/j.aej.2021.09.053
    [23] V. P. Dubey, J. Singh, A. M. Alshehri, S. Dubey, D. Kumar, A comparative analysis of two computational schemes for solving local fractional Laplace equations, Math. Methods Appl. Sci., 44 (2021), 13540–13559. https://doi.org/10.1002/mma.7642 doi: 10.1002/mma.7642
    [24] J. Singh, A. Ahmadian, S. Rathore, D. Kumar, D. Baleanu, M. Salimi, et al., An efficient computational approach for local fractional Poisson equation in fractal media, Numer. Methods Partial Differ. Equ., 37 (2021), 1439–1448. https://doi.org/10.1002/num.22589 doi: 10.1002/num.22589
    [25] M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two Novel techniques, Mathematics, 10 (2022), 1–19. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [26] A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [27] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [28] S. Earnshaw, Ⅷ. On the mathematical theory of sound, Phil. Trans. R. Soc., 150 (1860), 133–148. https://doi.org/10.1098/rstl.1860.0009 doi: 10.1098/rstl.1860.0009
    [29] B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Gesamm. Math. Werke, 8 (1860), 156–175.
    [30] W. J. M. Rankine, XV. On the thermodynamic theory of waves of finite longitudinal disturbance, Phil. Trans. R. Soc., 160 (1870), 277–288. https://doi.org/10.1098/rstl.1870.0015 doi: 10.1098/rstl.1870.0015
    [31] P. H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits, 2e partie, J. École Polytech, 58 (1889), 1–125.
    [32] J. Behrens, Atmospheric and ocean modeling with an adaptive finite element solver for the shallow-water equations, Appl. Numer. Math., 26 (1998), 217–226. https://doi.org/10.1016/S0168-9274(97)00090-1 doi: 10.1016/S0168-9274(97)00090-1
    [33] A. Bermudez, M. E. Vazquez, Upwind methods for hyperbolic conservation laws with course terms, Comput. Fluids, 23 (1994), 1049–1071. https://doi.org/10.1016/0045-7930(94)90004-3 doi: 10.1016/0045-7930(94)90004-3
    [34] N. L. E. Leon, Convergence of approximate solutions of the Cauchy problem for a $2\times2$ nonstrictly hyperbolic system of conservation laws, J. Comput. Appl. Math., 103 (1999), 139–144. https://doi.org/10.1016/S0377-0427(98)00247-7 doi: 10.1016/S0377-0427(98)00247-7
    [35] F. M. Allan, K. Al-Khaled, An approximation of the analytic solution of the shock wave equation, J. Comput. Appl. Math., 192 (2006), 301–309. https://doi.org/10.1016/j.cam.2005.05.009 doi: 10.1016/j.cam.2005.05.009
    [36] L. Noeiaghdam, S. Noeiaghdam, D. N. Sidorov, Dynamical control on the Adomian decomposition method for solving shallow water wave equation, iPolytech J., 25 (2021), 623–632. https://doi.org/10.21285/1814-3520-2021-5-623-632 doi: 10.21285/1814-3520-2021-5-623-632
    [37] S. Noeiaghdam, D. Sidorov, A. M. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernels using the CESTAC method, Mathematics, 9 (2021), 1–15. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
    [38] M. E. Berberler, A. Yildirim, He's homotopy perturbation method for solving the shock wave equation, Appl. Anal., 88 (2009), 997–1004. https://doi.org/10.1080/00036810903114767 doi: 10.1080/00036810903114767
    [39] S. Noeiaghdam, M. A. F. Araghi, D. Sidorov, Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, J. Comput. Appl. Math., 411 (2022), 114226. https://doi.org/10.1016/j.cam.2022.114226 doi: 10.1016/j.cam.2022.114226
    [40] S. Noeiaghdam, A. Dreglea, J. H. He, Z. Avazzadeh, M. Suleman, M. A. F. Araghi, et al., Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: Application of the CADNA library, Symmetry, 12 (2020), 1–16. https://doi.org/10.3390/sym12101730 doi: 10.3390/sym12101730
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1741) PDF downloads(124) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog