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1. Introduction

Fractional differential equations have gotten attention and prominence due to their numerous
applications in engineering and science. These equations, for instance, are increasingly being utilized
to explain phenomena in many different physical processes, including fluid mechanics, biology,
electromagnetic, signal processing, acoustics and many more. In these and other applications, the
non-locality of fractional differential equations is their main benefit. The integer order differential
operator is typically considered a local operator, whereas the fractional order differential operator is
non-local. This shows that the next state of a system depends on both its present state and all of its
previous states. This is more practical, which is one of the reasons fractional calculus is growing in
popularity [1–9].

Finding solutions to fractional differential equations has therefore received a lot of interest. A
fractional differential equation is typically challenging to solve exactly. Researchers were interested in
numerical approaches, the perturbation method among them. However, there are significant drawbacks
to perturbation methods. For instance, the approximate solution necessitates a number of small
parameters, which is problematic because most nonlinear problems do not have any small parameters.
Even if an adequate selection of minor parameters occasionally results in the optimal solution,
inappropriate selections frequently have negative consequences for the solutions. J. H. He, a Chinese
researcher, invented the homotopy perturbation method (HPM) and presented it in 1998 [10, 11].

The Adomian decomposition method [12, 13] is a powerful approach for solving linear and
nonlinear, homogeneous and nonhomogeneous partial and differential equations, and integro-
differential equations of integer and non-integer order, which gives us convergent series from exact
solutions. Several mathematicians used the homotopy perturbation method for handling nonlinear
equations arising in engineering and science [14–17]. Many authors have focused their attention
recently on examining the solutions to both linear and nonlinear partial differential equations using a
variety of techniques such as Elzaki transform decomposition method [18,19], homotopy perturbation
transform technique [20, 21], homotopy analysis transform method [22, 23], q-homotopy analysis
transform method [24], iterative Laplace transform method [25], variational iteration method [26, 27]
and many others among them.

The mathematical theory of shock waves describes the first-order quasi-linear hyperbolic system
of partial differential equations (PDEs) surface of discontinuity’s characteristics. In the latter half
of the 19th century, concerns with the compressible fluids and motion of gases gave rise to the
mathematical theory of shock waves. The research of Earnshaw [28], Riemann [29], Rankine [30]
and Hugoniot [31] laid the groundwork for it. One imagines a medium devoid of dissipation, viscosity
and thermal conductivity as an idealization of actual gases and fluids. There may be discontinuities
in the distribution of all flow parameters during motion in such idealized media (the temperature, the
pressure, the velocity, the density, etc.). The collection of flow parameter discontinuity spots may be
highly intricate when this set has piecewise-smooth surfaces of discontinuity made up of discontinuity
points of the first kind; only the most elementary basic cases have been carefully taken into account.
In the general scenario, discontinuous two-dimensional surfaces move in the three-dimensional space
R3 as time passes. Conservation laws are among the characteristics shared by all continuum physics
theories. By connecting the values of the primary vector field J to the flux f , constitutive relations that
characterize the specific medium in question are added to the laws. By connecting the principal vector
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field J values to the flux f , constitutive relations that characterize the specific medium in question are
added to the laws.

Since we are assuming that these relations are represented by smooth forms in this scenario, the
conservation laws lead to nonlinear hyperbolic PDEs, which are expressed in their most basic form as

Jϑ(κ, ϑ) + f (J(κ, ϑ))κ = 0, κ ∈ R, ϑ > 0, (1.1)

subjected to the initial condition
J(κ, 0) = J0(κ), κ ∈ R.

A model for a variety of physical phenomena, including shock waves and three-phase flow in porous
media, uses (1.1). Traffic flow, explosions, aeroplanes breaking the sound barrier, glacier waves, and
other phenomena all use shock waves. Nonlinear hyperbolic PDEs are used to formulate them [32–34].
The Adomian decomposition method (ADM) [35–37] and the homotopy perturbation method (HPM)
[38–40] have both been used to study the shock wave and wave equations. Since solutions are simple to
find, the classical shock wave and wave equations provide excellent predictive equations. We introduce
a fractional-order generalization of shock wave (1.1) in this article, which has the following form:

DρϑJ(κ, ϑ) + f (J(κ, ϑ))κ = 0, κ ∈ R, ϑ > 0, (1.2)

where a parameter named ρ designates the order of the time-derivative. In the Caputo sense, the
derivative is regarded. A parameter specifying the order of the fractional-order shock wave equation is
included in the general response expression and can be changed to generate different responses. The
fractional-order shock wave equation is reduced to the standard shock wave equation when ρ = 1.

This study solves the fractional-order shock wave and wave equations analytically and numerically
using the new homotopy perturbation transform technique and the Yang transform decomposition
method. This method’s ability to combine two effective approaches for generating precise and
approximative analytical solutions for nonlinear equations is an advantage. It is important to note that
the suggested methodology can perform better overall since it can reduce the amount of computational
work required compared to the other techniques while still keeping the high accuracy of the numerical
result.

The rest of the paper is organized as follows: In Section 2, we introduce some fundamental
preliminaries. In Section 3, we presented the general methodology of HPYTM to obtain the solution
of general arbitrary order PDE, while in Section 4, we presented the general method of YDTM to get
the solution of general arbitrary order PDE. In Section 5, the suggested techniques are implemented
for solving nonlinear fractional-order shock wave equations, and in Section 6, results and discussion
are given. Similarly, in the end, a brief conclusion is given in Section 7.

2. Preliminaries

In this section, we discuss a number of important concepts, terminology and ideas relevant to the
fractional derivative operators used in the current study.

Definition 2.1. The fractional Caputo derivative is stated as

DρJ J(κ, ϑ) =
1

Γ(k − ρ)

∫ ϑ

0
(ϑ − ρ)k−ρ−1J(k)(κ, ρ)dρ, k − 1 < ρ ≤ k, k ∈ N. (2.1)
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Definition 2.2. The Yang transform (YT) of a function J(ϑ) is stated as

Y (J(ϑ)) = M(u) =
∫ ∞

0
e
−ϑ
u J(ϑ)dϑ, ϑ > 0, u ∈ (−ϑ1, ϑ2), (2.2)

having Yang inverse transform as
Y−1{M(u)} = J(ϑ). (2.3)

Definition 2.3. The Yang transform of nth derivatives is stated as

Y(Jn(ϑ)) =
M(u)

un −

n−1∑
k=0

Jk(0)
un−k−1 , (2.4)

for all n = 1, 2, 3, . . . .

Definition 2.4. The Yang transform of fractional-order derivative is stated as

Y(Jρ(ϑ)) =
M(u)

uρ
−

n−1∑
k=0

Jk(0)
uρ−(k+1) , 0 < ρ ≤ n. (2.5)

3. General methodology of HPYTM

This section is concerned with fundamental solution process of HPYTM to get the solution of
general arbitrary order partial differential equation

DρϑJ(κ, ϑ) = P1[κ]J(κ, ϑ) + Q1[κ]J(κ, ϑ), 0 < ρ ≤ 2, (3.1)

subjected to the initial conditions

J(κ, 0) = ξ(κ),
∂

∂ϑ
J(κ, 0) = ζ(κ),

where Dρϑ =
∂ρ

∂ϑρ
is the fractional Caputo derivative, P1[κ] and Q1[κ] are linear and nonlinear operators.

By employing YT, we have

Y
[
DρϑJ(κ, ϑ)

]
= Y[P1[κ]J(κ, ϑ) + Q1[κ]J(κ, ϑ)], (3.2)

1
uρ

{
M(u) − uJ(0) − u2J

′

(0)
}
= Y[P1[κ]J(κ, ϑ) + Q1[κ]J(κ, ϑ)]. (3.3)

On simplification, we get

M(J) = uJ(0) + u2J
′

(0) + uρY[P1[κ]J(κ, ϑ) + Q1[κ]J(κ, ϑ)]. (3.4)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) + J
′

(0) + Y−1[uρY[P1[κ]J(κ, ϑ) + Q1[κ]J(κ, ϑ)]]. (3.5)

Now, by using the HPM

J(κ, ϑ) =
∞∑

k=0

ϵkJk(κ, ϑ), (3.6)
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with perturbation parameter ϵ ∈ [0, 1].
The nonlinear terms are decomposed as

Q1[κ]J(κ, ϑ) =
∞∑

k=0

ϵkHn(J), (3.7)

and He’s polynomials Hk(J) are given as

Hn(J0, J1, . . . , Jn) =
1

Γ(n + 1)
Dk
ϵ

Q1

 ∞∑
k=0

ϵ iJi


ϵ=0

, (3.8)

where Dk
ϵ =

∂k

∂ϵk
.

Using (3.7) and (3.8) in (3.5), we have

∞∑
k=0

ϵkJk(κ, ϑ) = J(0) + J
′

(0) + ϵ

Y−1

uρY

P1

∞∑
k=0

ϵkJk(κ, ϑ) +
∞∑

k=0

ϵkHk(J)



 . (3.9)

Thus, by equating the coefficient of ϵ, we get

ϵ0 : J0(κ, ϑ) = J(0) + J
′

(0),
ϵ1 : J1(κ, ϑ) = Y−1 [uρY(P1[κ]J0(κ, ϑ) + H0(J))] ,
ϵ2 : J2(κ, ϑ) = Y−1 [uρY(P1[κ]J1(κ, ϑ) + H1(J))] ,
...

ϵk : Jk(κ, ϑ) = Y−1 [uρY(P1[κ]Jk−1(κ, ϑ) + Hk−1(J))] ,

(3.10)

for k > 0, k ∈ N.
Finally, we use truncated series to approximate the analytical solution Jk(κ, ϑ),

J(κ, ϑ) = lim
M→∞

M∑
k=1

Jk(κ, ϑ). (3.11)

The solutions to the aforementioned series usually converge quickly.

4. General methodology of YTDM

This section is concerned with the fundamental solution process of YTDM to get the solution of
general arbitrary order partial differential equation

DρϑJ(κ, ϑ) = P1(κ, ϑ) + Q1(κ, ϑ), 0 < ρ ≤ 1, (4.1)

subjected to the initial conditions

J(κ, 0) = ξ(κ),
∂

∂ϑ
J(κ, 0) = ζ(κ),
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where Dρϑ =
∂ρ

∂ϑρ
is the fractional Caputo derivative, P1 and Q1 are linear and non-linear operators,

respectively.
By employing YT, we have

Y
[
DρϑJ(κ, ϑ)

]
= Y [P1(κ, ϑ) + Q1(κ, ϑ)] , (4.2)

using the differentiation property of the YT, we have

1
uρ

{
M(u) − uJ(0) − u2J

′

(0)
}
= Y [P1(κ, ϑ) + Q1(κ, ϑ)] . (4.3)

On simplification, we get

M(J) = uJ(0) + u2J
′

(0) + uρY [P1(κ, ϑ) + Q1(κ, ϑ)] . (4.4)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) + J
′

(0) + Y−1[uρY[P1(κ, ϑ) + Q1(κ, ϑ)]. (4.5)

Thus, by means of YTDM the infinite series solution of J(κ, ϑ),

J(κ, ϑ) =
∞∑

m=0

Jm(κ, ϑ). (4.6)

The decomposition of of nonlinear terms Q1 in terms of the Adomian polynomials are given as

Q1(κ, ϑ) =
∞∑

m=0

Am, (4.7)

where

Am =
1

m!

 ∂m

∂ℓm

Q1

 ∞∑
k=0

ℓkκk,

∞∑
k=0

ℓkϑk




ℓ=0

. (4.8)

By putting (4.6) and (4.8) into (4.5), we obtain

∞∑
m=0

Jm(κ, ϑ) = J(0) + J
′

(0) + Y−1uρ
Y P1

 ∞∑
m=0

κm,

∞∑
m=0

ϑm

 + ∞∑
m=0

Am

 . (4.9)

We illustrate the below terms:

J0(κ, ϑ) = J(0) + ϑJ
′

(0), (4.10)
J1(κ, ϑ) = Y−1 [

uρY+ {P1(κ0, ϑ0) +A0}
]
. (4.11)

Hence, in general for m ≥ 1, we have

Jm+1(κ, ϑ) = Y−1 [
uρY+{P1(κm, ϑm) +Am}

]
.
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5. Applications

This section is concerned with the implementation of YTDM and HPYTM to solve fractional-order
nonlinear shock wave equations.

Example 5.1. Consider the nonlinear fractional-order shock wave equation

∂ρJ

∂ϑρ
+

(
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ
= 0, 0 < ρ ≤ 1, (5.1)

with the initial condition

J(κ, 0) = exp
(
−
κ2

2

)
,

where c0 and Υ are constants with Υ representing the specific heat. In the present study, we choose
c0 = 2 and Υ = 1.5, which represent the airflow.

By employing YT, we have

Y
(
∂ρJ

∂ϑρ

)
= −Y

[(
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

]
. (5.2)

Now, by YT differentiation property, we get

1
uρ
{M(u) − uJ(0)} = −Y

[(
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

]
(5.3)

and

M(u) = uJ(0) − uρY
[(

1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

]
. (5.4)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) − Y−1
{

uρ
[
Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)]}
,

J(κ, ϑ) = exp
(
−
κ2

2

)
− Y−1

{
uρ

[
Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)]}
.

(5.5)

Thus, by using the HPM, we obtain

∞∑
k=0

ϵkJk(κ, ϑ) = γ + ϵ

Y−1

uρY

 1
c0

∂J

∂κ

 ∞∑
k=0

ϵkJk(κ, ϑ)

 − Υ + 1
2

1
c2

0

 ∞∑
k=0

ϵkHk(J)



 , (5.6)

where non-linear terms are represented by He’s polynomial Hk(J) and is stated as
∞∑

k=0

ϵkHk(J) = J
∂J

∂κ
. (5.7)

Some components of He’s polynomials are calculated as

H0(J) = J0
∂J0
∂κ
, H1(J) = J0

∂J1
∂κ
+ J1
∂J0
∂κ
.
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By comparing the coefficient of ϵ, we obtain

ϵ0 : J0(κ, ϑ) = exp
(
−
κ2

2

)
,

ϵ1 : J1(κ, ϑ) = Y−1
{

uρY
(

1
c0

∂J0
∂κ
−
Υ + 1

2
1
c2

0

H0(J)
)}
= −

[
1
c0
−
Υ + 1
2c2

0

exp
(
−
κ2

2

)]
κ exp

(
−
κ2

2

)
ϑρ

Γ(ρ + 1)
,

ϵ2 : J2(κ, ϑ) = Y−1
{

uρY
[
(

1
c0

∂J1
∂κ
−
Υ + 1

2
1
c2

0

H1(J)
)}
= exp

(
−
κ2

2

) [
−

1
c2

0

+
κ2

c2
0

−
Υ + 1

c3
0

exp
(
−
κ2

2

)
−

2(Υ + 1)
c3

0

κ2 exp
(
−
κ2

2

)
−

(Υ + 1)2

4c4
0

exp
(
−κ2

)
+

3(Υ + 1)2

4c4
0

κ2 exp
(
−κ2

)] ϑ2ρ

Γ(2ρ + 1)
,

...

The remaining elements of the HPYTM solution can be achieved by continuing in the same way. Thus,

J(κ, ϑ) = exp
(
−
κ2

2

)
−

[
1
c0
−
Υ + 1
2c2

0

exp
(
−
κ2

2

)]
κ exp

(
−
κ2

2

)
ϑρ

Γ(ρ + 1)
+ exp

(
−
κ2

2

)
×

[
−

1
c2

0

+
κ2

c2
0

−
Υ + 1

c3
0

exp
(
−
κ2

2

)
−

2(Υ + 1)
c3

0

κ2 exp
(
−
κ2

2

)
−

(Υ + 1)2

4c4
0

exp
(
−κ2

)
+

3(Υ + 1)2

4c4
0

κ2 exp
(
−κ2

)] ϑ2ρ

Γ(2ρ + 1)
+ · · · .

By employing YT, we have

Y
(
∂ρJ

∂ϑρ

)
= −Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)
. (5.8)

Now, by YT differentiation property, we get

1
uρ
{M(u) − uJ(0)} = −Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)
, (5.9)

M(u) = uJ(0) + uρY
((

1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)
. (5.10)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) − Y−1
{

uρ
[
Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)]}
,

J(κ, ϑ) = exp
(
−
κ2

2

)
− Y−1

{
uρ

[
Y

((
1
c0
−
Υ + 1

2
J

c2
0

)
∂J

∂κ

)]}
.

(5.11)

Thus, by means of YTDM the infinite series solution of J(κ, ϑ),

J(κ, ϑ) =
∞∑

m=0

Jm(κ, ϑ), (5.12)
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and by means of Adomian polynomial, the nonlinear terms are derived as J ∂J
∂κ
=

∑∞
m=0Am, we have

∞∑
m=0

Jm(κ, ϑ) = J(κ, 0) − Y−1

uρ
Y  1

c0

∂J

∂κ
−
Υ + 1
2c2

0

∞∑
m=0

Am


 ,

∞∑
m=0

Jm(κ, ϑ) = exp
(
−
κ2

2

)
− Y−1

uρ
Y  1

c0

∂J

∂κ
−
Υ + 1
2c2

0

∞∑
m=0

Am


 .

(5.13)

In this way, the nonlinear terms are decomposed as

A0 = J0
∂J0
∂κ
, A1 = J0

∂J1
∂κ
+ J1
∂J0
∂κ
.

On comparing both sides, we get

J0(κ, ϑ) = exp
(
−
κ2

2

)
.

On m = 0, we have

J1(κ, ϑ) = −
[

1
c0
−
Υ + 1
2c2

0

exp
(
−
κ2

2

)]
κ exp

(
−
κ2

2

)
ϑρ

Γ(ρ + 1)
.

On m = 1, we have

J2(κ, ϑ) = exp
(
−
κ2

2

) [
−

1
c2

0

+
κ2

c2
0

−
Υ + 1

c3
0

exp
(
−
κ2

2

)
−

2(Υ + 1)
c3

0

κ2 exp
(
−
κ2

2

)
−

(Υ + 1)2

4c4
0

exp
(
−κ2

)
+

3(Υ + 1)2

4c4
0

κ2 exp
(
−κ2

)] ϑ2ρ

Γ(2ρ + 1)
.

Thus, the remaining elements ρm of YTDM for (m ≥ 2) are easy to get. Hence, we write the series
form solution as

J(κ, ϑ) =
∞∑

m=0

Jm(κ, ϑ) = J0(κ, ϑ) + J1(κ, ϑ) + J2(κ, ϑ) + · · · ,

J(κ, ϑ) = exp
(
−
κ2

2

)
−

[
1
c0
−
Υ + 1
2c2

0

exp
(
−
κ2

2

)]
κ exp

(
−
κ2

2

)
ϑρ

Γ(ρ + 1)

+ exp
(
−
κ2

2

) [
−

1
c2

0

+
κ2

c2
0

−
Υ + 1

c3
0

exp
(
−
κ2

2

)
−

2(Υ + 1)
c3

0

κ2 exp
(
−
κ2

2

)
−

(Υ + 1)2

4c4
0

exp
(
−κ2

)
+

3(Υ + 1)2

4c4
0

κ2 exp
(
−κ2

)] ϑ2ρ

Γ(2ρ + 1)
+ · · · .

Example 5.2. Consider the nonlinear fractional-order shock wave equation

∂ρJ

∂ϑρ
+ J
∂J

∂κ
−
∂

∂ϑ

∂J2

∂κ2
= 0, 0 < ρ ≤ 1, (5.14)

with initial source

J(κ, 0) = 3 sech2
(
κ − 15

2

)
.
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By employing YT, we have

Y
(
∂ρJ

∂ϑρ

)
= Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
. (5.15)

Now, by YT differentiation property, we get

1
uρ
{M(u) − uJ(0)} = Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
(5.16)

and

M(u) = uJ(0) + uρY
(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
. (5.17)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) + Y−1
{

uρ
[
Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)]}
,

J(κ, ϑ) = 3 sech2
(
κ − 15

2

)
+ Y−1

{
uρ

[
Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)]}
.

(5.18)

Now, by using the HPM, we obtain
∞∑

k=0

ϵkJk(κ, ϑ) = 3 sech2
(
κ − 15

2

)
+ ϵ

Y−1

uρY


 ∞∑

k=0

ϵkJk(κ, ϑ)


κκϑ

−

 ∞∑
k=0

ϵkHk(J)




 , (5.19)

where non-linear terms are presented by He’s polynomial Hk(J) and is stated as
∞∑

k=0

ϵkHk(J) = J
∂J

∂κ
. (5.20)

Some terms of He’s polynomials are calculated as

H0(J) = J0
∂J0
∂κ
, H1(J) = J0

∂J1
∂κ
+ J1
∂J0
∂κ
.

By comparing the coefficient of ϵ, we obtain

ϵ0 : J0(κ, ϑ) = 3 sech2
(
κ − 15

2

)
,

ϵ1 : J1(κ, ϑ) = Y−1
{

uρY
(
∂

∂ϑ

∂J20
∂κ2
− H0(J)

)}
= 9 sech4

(
κ − 15

2

)
tanh

(
κ − 15

2

)
ϑρ

Γ(ρ + 1)
,

ϵ2 : J2(κ, ϑ) = Y−1
{

uρY
(
∂

∂ϑ

∂J21
∂κ2
− H1(J)

)}
=

[
189
2

sech6
(
κ − 15

2

)
tanh2

(
κ − 15

2

)
−

27
2

sech6
(
κ − 15

2

)]
ϑ2ρ

Γ(2ρ + 1)

+

[
135
2

sech4
(
κ − 15

2

)
tanh3

(
κ − 15

2

)
−

63
2

sech4
(
κ − 15

2
tanh

(
κ − 15

2

))]
Γ(ρ + 1)ϑ2ρ−1

Γ(2ρ)
,

...
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The remaining elements of the HPYTM solution can be achieved by continuing in the same way. Thus,

J(κ, ϑ) = 3 sech2
(
κ − 15

2

)
+ 9 sech4

(
κ − 15

2

)
tanh

(
κ − 15

2

)
ϑρ

Γ(ρ + 1)

+

[
189
2

sech6
(
κ − 15

2

)
tanh2

(
κ − 15

2

)
−

27
2

sech6
(
κ − 15

2

)]
ϑ2ρ

Γ(2ρ + 1)

+

[
135
2

sech4
(
κ − 15

2

)
tanh3

(
κ − 15

2

)
−

63
2

sech4
(
κ − 15

2
tanh

(
κ − 15

2

))]
Γ(ρ + 1)ϑ2ρ−1

Γ(2ρ)
+ · · · .

By employing YT, we have

Y
(
∂ρJ

∂ϑρ

)
= Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
. (5.21)

Now, by YT differentiation property, we have

1
uρ
{M(u) − uJ(0)} = Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
(5.22)

and

M(u) = uJ(0) + uρY
(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)
. (5.23)

Operating inverse YT both sides, we have

J(κ, ϑ) = J(0) + Y−1
{

uρ
[
Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)]}
,

J(κ, ϑ) =
1

(1 + exp(κ))2 + Y−1
{

uρ
[
Y

(
∂

∂ϑ

∂J2

∂κ2
− J
∂J

∂κ

)]}
.

(5.24)

Thus, by means of YTDM the infinite series solution of J(κ, ϑ),

J(κ, ϑ) =
∞∑

m=0

Jm(κ, ϑ), (5.25)

and by means of Adomian polynomial, the nonlinear terms are derived as J ∂J
∂κ
=

∑∞
m=0Am, we have

∞∑
m=0

Jm(κ, ϑ) = J(κ, 0) + Y−1

uρ
Y  ∂∂ϑ ∂J2∂κ2 −

∞∑
m=0

Am


 ,

∞∑
m=0

Jm(κ, ϑ) =
1

(1 + exp(κ))2 + Y−1

uρ
Y  ∂∂ϑ ∂J2∂κ2 −

∞∑
m=0

Am


 .

(5.26)

In this way, the nonlinear terms are decomposed as

A0 = J0
∂J0
∂κ
, A1 = J0

∂J1
∂κ
+ J1
∂J0
∂κ
.
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On comparing both sides, we get

J0(κ, ϑ) = 3 sech2
(
κ − 15

2

)
.

On m = 0, we have

J1(κ, ϑ) = 9 sech4
(
κ − 15

2

)
tanh

(
κ − 15

2

)
ϑρ

Γ(ρ + 1)
.

On m = 1, we have

J2(κ, ϑ) =
[
189
2

sech6
(
κ − 15

2

)
tanh2

(
κ − 15

2

)
−

27
2

sech6
(
κ − 15

2

)]
ϑ2ρ

Γ(2ρ + 1)

+

[
135
2

sech4
(
κ − 15

2

)
tanh3

(
κ − 15

2

)
−

63
2

sech4
(
κ − 15

2
tanh

(
κ − 15

2

))]
Γ(ρ + 1)ϑ2ρ−1

Γ(2ρ)
.

Thus, the remaining elements ρm of YTDM for (m ≥ 3) are easy to get. Hence, we write the series
form solution as

J(κ, ϑ) =
∞∑

m=0

Jm(κ, ϑ) = J0(κ, ϑ) + J1(κ, ϑ) + · · · ,

J(κ, ϑ) = 3 sech2
(
κ − 15

2

)
+ 9 sech4

(
κ − 15

2

)
tanh

(
κ − 15

2

)
ϑρ

Γ(ρ + 1)

+

[
189
2

sech6
(
κ − 15

2

)
tanh2

(
κ − 15

2

)
−

27
2

sech6
(
κ − 15

2

)]
ϑ2ρ

Γ(2ρ + 1)

+

[
135
2

sech4
(
κ − 15

2

)
tanh3

(
κ − 15

2

)
−

63
2

sech4
(
κ − 15

2
tanh

(
κ − 15

2

))]
Γ(ρ + 1)ϑ2ρ−1

Γ(2ρ)
+ · · · .

At ρ = 1, we get in closed form the exact solution as

J(κ, ϑ) = 3 sech2
(
κ − 15 − ϑ

2

)
. (5.27)

6. Results and discussion

In this section, we present the physical explanations for the presented problems. We note that our
approaches can handle time fractional-order shock wave equations perfectly. It can be shown that
J(κ, ϑ) reduces with the growth of κ and ϑ for ρ = 0.25, 0.50, 0.75 and 1 in Figure 1, which shows the
surface solutions of J(κ, ϑ) for various time fractional equations in Brownian. The analytical solution
derived using the suggested approaches is shown in Figure 2, together with the exact solution for
various values of κ and ϑ. Figure 2 also shows the surface solutions of J(κ, ϑ). Figure 3 shows the
absolute error behavior of Example 5.2. Similarly, in Table 1, we show the behavior of the accurate
and proposed method solutions at various fractional orders of ρ having different values of κ and ϑ.
The figures and table show that the solution of the proposed method is in good contact with the exact
solution.
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Figure 1. The J(κ, ϑ) surface solutions with regard to κ and ϑ for various ρ values within the
domain −1 ≤ κ, ϑ ≤ 1. (a) Surface solution of the function J(κ, ϑ) at the value of ρ = 0.25.
(b) Surface solution of the function J(κ, ϑ) at the value of ρ = 0.50. (c) Surface solution of
the function J(κ, ϑ) at the value of ρ = 0.75. (d) Surface solution of the function J(κ, ϑ) at the
value of ρ = 1.
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Figure 2. The J(κ, ϑ) surface solutions with regard to κ and ϑ for various ρ values within the
domain 0 ≤ κ, ϑ ≤ 10. (a) Surface solution of the function J(κ, ϑ) at the value of ρ = 0.25.
(b) Surface solution of the function J(κ, ϑ) at the value of ρ = 0.50. (c) Surface solution of
the function J(κ, ϑ) at the value of ρ = 0.75. (d) Surface solution of the function J(κ, ϑ) at the
value of ρ = 1.
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Figure 3. The absolute error graph for J(κ, ϑ) of Example 5.2.

Table 1. Example 5.1: Exact, YTDM and HPYTM solution for J(κ, ϑ) at different fractional-
order of ρ, κ and ϑ.

ϑ κ ρ = 0.6 ρ = 0.8 ρ = 1(approx) ρ = 1(approx) ρ = 1(exact)
0.2 0.000004490 0.000004487 0.000004483 0.000004483 0.000004479
0.4 0.000005481 0.000005479 0.000005476 0.000005476 0.000005470

0.01 0.6 0.000006693 0.000006691 0.000006688 0.000006688 0.000006681
0.8 0.000008171 0.000008171 0.000008169 0.000008169 0.000008161
1 0.000009982 0.000009980 0.000009978 0.000009978 0.000009968

0.2 0.000004490 0.000004487 0.000004483 0.000004483 0.000004474
0.4 0.000005482 0.000005478 0.000005476 0.000005476 0.000005465

0.02 0.6 0.000006693 0.000006690 0.000006688 0.000006688 0.000006675
0.8 0.000008177 0.000008172 0.000008169 0.000008169 0.000008153
1 0.000009987 0.000009982 0.000009978 0.000009978 0.000009958

0.2 0.000004489 0.000004485 0.000004483 0.000004483 0.000004470
0.4 0.000005489 0.00000583 0.000005476 0.000005476 0.000005459

0.03 0.6 0.000006693 0.000006690 0.000006688 0.000006688 0.000006668
0.8 0.000008179 0.000008174 0.000008169 0.000008169 0.000008145
1 0.000009989 0.000009982 0.000009978 0.000009978 0.000009948

0.2 0.000004492 0.000004487 0.000004483 0.000004483 0.000004465
0.4 0.000005487 0.000005481 0.000005476 0.000005476 0.000005454

0.04 0.6 0.000006699 0.000006691 0.000006688 0.000006688 0.000006661
0.8 0.000008183 0.000008177 0.000008169 0.000008169 0.000008136
1 0.000009999 0.000009983 0.000009978 0.000009978 0.000009938

0.2 0.000004497 0.000004489 0.000004483 0.000004483 0.000004461
0.4 0.000005490 0.000005479 0.000005476 0.000005476 0.000005448

0.05 0.6 0.000006697 0.000006691 0.000006688 0.000006688 0.000006655
0.8 0.000008191 0.000008185 0.000008169 0.000008169 0.000008128
1 0.000009997 0.000009988 0.000009978 0.000009978 0.000009928
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7. Conclusions

The approximate and analytical solutions of the fractional-order nonlinear shock wave and wave
equations are successfully obtained using the HPYTM and YTDM. The proposed methods are
completed in two steps. First, we implement the Yang transform to simplify the proposed problems.
After simplification, Adomian decomposition and homotopy perturbation methods are used to get the
close form solution to the issues presented. The significance of fractional derivatives and the method
for handling the recurrence relation are both shown in this study. The HPYTM and YTDM are used
directly to generate the series solutions. Compared to previous methods examined in the literature,
the current schemes exhibit more efficiency and require less computation. With the aid of MAPLE
Software, all iterations were calculated. According to the solution graphs, this method can be applied
to a wide range of nonlinear fractional differential equations in science and engineering. In subsequent
research, these strategies could be expanded to address diverse nonlinear obstacle issues.
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