In this article we consider the homotopy perturbation transform method to investigate the fractional-order equal-width equations. The homotopy perturbation transform method is a mixture of the homotopy perturbation method and the Yang transform. The fractional-order derivative are defined in the sense of Caputo-Fabrizio operator. Several fractions of solutions are calculated which define some valuable evolution of the given problems. The homotopy perturbation transform method results are compared with actual results and good agreement is found. The suggested method can be used to investigate the fractional perspective analysis of problems in a variety of applied sciences.
Citation: Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah. Evaluation of fractional-order equal width equations with the exponential-decay kernel[J]. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949
In this article we consider the homotopy perturbation transform method to investigate the fractional-order equal-width equations. The homotopy perturbation transform method is a mixture of the homotopy perturbation method and the Yang transform. The fractional-order derivative are defined in the sense of Caputo-Fabrizio operator. Several fractions of solutions are calculated which define some valuable evolution of the given problems. The homotopy perturbation transform method results are compared with actual results and good agreement is found. The suggested method can be used to investigate the fractional perspective analysis of problems in a variety of applied sciences.
[1] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, New York: Springer, 2010. |
[2] | D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011. |
[3] | K. M. Saad, A different approach for the fractional chemical model, Rev. Mex. Fis., 68 (2022), 011404. https://doi.org/10.31349/RevMexFis.68.011404 doi: 10.31349/RevMexFis.68.011404 |
[4] | Y. Talaei, S. Micula, H. Hosseinzadeh, S. Noeiaghdam, A novel algorithm to solve nonlinear fractional quadratic integral equations, AIMS Math., 7 (2022), 13237–13257. https://doi.org/10.3934/math.2022730 doi: 10.3934/math.2022730 |
[5] | F. Ghomanjani, S. Noeiaghdam, S. Micula, Application of transcendental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022. https://doi.org/10.1155/2022/4303775 |
[6] | H. Khan, D. Baleanu, P. Kumam, M. Arif, The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation, Alex. Eng. J., 59 (2020), 2941–2956. https://doi.org/10.1016/j.aej.2020.03.029 doi: 10.1016/j.aej.2020.03.029 |
[7] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. |
[8] | S. Noeiaghdam, S. Micula, J. J. Nieto, A novel technique to control the accuracy of a nonlinear fractional order model of COVID-19: Application of the CESTAC method and the CADNA library, Mathematics, 9 (2021), 1321. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[9] | K. B. Oldham, J. Spanier, The fractional calculus, New York: Acadamic Press, 1974. https://doi.org/10.3390/math9121321 |
[10] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[11] | A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 64. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064 |
[12] | S. Kumar, R. Kumar, M. S. Osman, B. Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials, Numer. Meth. Part. D. E., 37 (2021), 1250–1268. https://doi.org/10.1002/num.22577 doi: 10.1002/num.22577 |
[13] | S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Meth. Part. D. E., 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603 |
[14] | X. J. Yang, H. M. Srivastava, J. A. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756. |
[15] | H. Khan, U. Farooq, D. Baleanu, P. Kumam, M. Arif, Analytical solutions of (2+time fractional order) dimensional physical models, using modified decomposition method, Appl. Sci., 10 (2019), 122. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y |
[16] | R. Shah, H. Khan, D. Baleanu, Fractional Whitham-Broer-Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125. |
[17] | X. J. Yang, J. T. Machado, A new fractional operator of variable order: Application in the description of anomalous diffusion, Physica A, 481 (2017), 276–283. https://doi.org/10.3390/axioms8040125 doi: 10.3390/axioms8040125 |
[18] | P. D. Barba, L. Fattorusso, M. Versaci, Electrostatic field in terms of geometric curvature in membrane MEMS devices, Commun. Appl. Ind. Math., 8 (2017), 165–184. https://doi.org/10.1515/caim-2017-0009 doi: 10.1515/caim-2017-0009 |
[19] | L. Yong, H. N. Wang, X. Chen, X. Yang, Z. P. You, S. Dong, et al., Shear property, high-temperature rheological performance and low-temperature flexibility of asphalt mastics modified with bio-oil, Constr. Build. Mater., 174 (2018), 30–37. |
[20] | J. H. He, Homotopy perturbation technique, Comput. Method. Appl. M., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[21] | S. Noeiaghdam, M. A. F. Araghi, D. Sidorov, Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, J. Comput. Appl. Math., 411 (2022), 114226. https://doi.org/10.1016/j.cam.2022.114226 doi: 10.1016/j.cam.2022.114226 |
[22] | S. Noeiaghdam, A. Dreglea, J. He, Z. Avazzadeh, M. Suleman, M. A. Fariborzi Araghi, et al., Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: Application of the CADNA library, Symmetry, 12 (2020), 1730. https://doi.org/10.3390/sym12101730 doi: 10.3390/sym12101730 |
[23] | X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci., 20 (2016), 639–642. https://doi.org/10.2298/TSCI16S3639Y doi: 10.2298/TSCI16S3639Y |
[24] | M. Caputo, M. Fabrizio, On the singular kernels for fractional derivatives, some applications to partial differential equations, Progr. Fract. Differ. Appl., 7 (2021), 1–4. http://dx.doi.org/10.18576/pfda/0070201 doi: 10.18576/pfda/0070201 |
[25] | S. Ahmad, A. Ullah, A. Akgul, M. De la Sen, A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Space., 2021. https://doi.org/10.1155/2021/8770488 |
[26] | X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci., 20 (2016), 639–642. https://doi.org/10.2298/TSCI16S3639Y doi: 10.2298/TSCI16S3639Y |
[27] | N. A. Shah, I. Dassios, J. D. Chung, Numerical investigation of time-fractional equivalent width equations that describe hydromagnetic waves, Symmetry, 13 (2021), 418. https://doi.org/10.3390/sym13030418 doi: 10.3390/sym13030418 |