The study of expansions of certain mock theta functions in special functions theory has a long and quite significant history. Motivated by recent correlations between $ q $-series and mock theta functions, we establish a new $ q $-series transformation formula and derive the double-sum expansions for mock theta functions. As an application, we state new double-sum representations for certain mock theta functions.
Citation: Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz. New double-sum expansions for certain Mock theta functions[J]. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948
The study of expansions of certain mock theta functions in special functions theory has a long and quite significant history. Motivated by recent correlations between $ q $-series and mock theta functions, we establish a new $ q $-series transformation formula and derive the double-sum expansions for mock theta functions. As an application, we state new double-sum representations for certain mock theta functions.
[1] | G. E. Andrews, D. Hickerson, Ramanujan's "lost notebook": The sixth order mock theta functions, Adv. Math., 89 (1991), 60–105. https://doi.org/10.1016/0001-8708(91)90083-J doi: 10.1016/0001-8708(91)90083-J |
[2] | G. E. Andrews, $q$-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc. Steklov Inst. Math., 276 (2012), 21–32. https://doi.org/10.1134/S0081543812010038 doi: 10.1134/S0081543812010038 |
[3] | B. C. Berndt, S. H. Chan, Sixth order mock theta functions Adv. Math., 216 (2007), 771–786. https://doi.org/10.1016/j.aim.2007.06.004 doi: 10.1016/j.aim.2007.06.004 |
[4] | B. C. Berndt, R. A. Rankin, Ramanujan: Letters and Commentary, History of Mathematics, 9. American Mathematical Society, Providence, RI, London. Mathematical Society, London (1995), xiv+347pp. |
[5] | G. Gasper, M. Rahman, Basic Hypergeometric Series, 2Eds, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511526251 |
[6] | B. Gordon, R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc.(2), 62 (2000), 321–335. https://doi.org/10.1112/S0024610700008735 doi: 10.1112/S0024610700008735 |
[7] | B. Gordon, R. J. McIntosh, A survey of classic mock theta functions, In Partitions, $q$-Series, and Modular Forms, Developments in Math., 23 (2012), 95–144. |
[8] | Q. X. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type $q$-starlike functions and its consequences, Symmetry, 13 (2021), Article ID 1275, 1–14. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275 |
[9] | Z. Jia, B. Khan, Q. Hu, D. Niu, Applications of generalized $q$-difference equations for general $q$-polynomials, Symmetry, 13 (2021), 1222. https://doi.org/10.3390/sym13071222 doi: 10.3390/sym13071222 |
[10] | Z. Jia, B. Khan, P. Agarwal, Q. Hu, X. Wang, Two new Bailey lattices and their applications, Symmetry, 13 (2021), 958. https://doi.org/10.3390/sym13060958 doi: 10.3390/sym13060958 |
[11] | B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of $q$-derivative operator to the subclass of Bi-Univalent functions involving $q$-Chebyshev Ppolynomials, J. Math., 2022 (2022), 8162182. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182 |
[12] | B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. https://doi.org/10.3934/math.2021061 doi: 10.3934/math.2021061 |
[13] | M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, et al., Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, Dev. Geom. Funct. Theory, 2021 (2021), Article ID 4343163, 9 pages. https://doi.org/10.1155/2021/4343163 doi: 10.1155/2021/4343163 |
[14] | W. K. Mashwani, B. Ahmad, N. Khan, M. G. Khan, S. Arjika, B. Khan, et al., Fourth Hankel determinant for a subclass of starlike functions based on modified sigmoid, J. Funct. Space., 2021 (2021), Article ID 6116172. https://doi.org/10.1155/2021/6116172 doi: 10.1155/2021/6116172 |
[15] | M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Math. 6 (2021), 1110–1125. https://doi.org/10.3934/math.2021067 doi: 10.3934/math.2021067 |
[16] | L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, et al., Coefficient estimates for a subclass of meromorphic multivalent $q$ -close-to-convex functions, Symmetry, 2021, 13, 1840. https://doi.org/10.3390/sym13101840 doi: 10.3390/sym13101840 |
[17] | H. M. Srivastava, J. Cao, S. Arjika, A note on generalized $q $-difference equations and their applications involving $q$-hypergeometric functions, Symmetry, 12 (2020), 1816. https://doi.org/10.3390/sym12111816 doi: 10.3390/sym12111816 |
[18] | H. M. Srivastava, S. Arjika, A. S. Kelil, Some homogeneous $q$-difference operators and the associated generalized Hahn polynomials, Appl. Set-Valued Anal. Optim., 1 (2019), 187–201. https://doi.org/10.48550/arXiv.1908.03207 doi: 10.48550/arXiv.1908.03207 |
[19] | J. Lovejoy, R. Osburn, Mock theta double sums, Glasg. Math. J., 59 (2017), 323–348. https://doi.org/10.1017/S0017089516000197 doi: 10.1017/S0017089516000197 |
[20] | R. J. McIntosh, Second order mock theta functions, Can. Math. Bull., 50 (2007), 284–290. https://doi.org/10.4153/CMB-2007-028-9 doi: 10.4153/CMB-2007-028-9 |
[21] | A. E. Patkowski, On some new Bailey pairs and new expansions for some Mock theta functions, Methods Appl. Anal., 23 (2016), 205–213. https://doi.org/10.7216/1300759920162310306 doi: 10.7216/1300759920162310306 |
[22] | A. E. Patkowski, More on some Mock theta double sums, Adv. in Appl. Math., 106 (2019), 20–27. https://doi.org/10.1016/j.aam.2019.01.006 doi: 10.1016/j.aam.2019.01.006 |
[23] | S. Ramanujan, Collected papers of Srinivasa Ramanujan, Edited by G. H. Hardy, P. V. Seshu. Aiyar, B. M. Wilson, Third printing of the 1927 original. With a new preface and commentary by Bruce C. Berndt, AMS Chelsea Publishing; Providence, RI (2000), xxxviii+426pp. |
[24] | S. Ramanujan Collected Papers, Cambridge University Press, 1972, reprinted Chelsea, New York, 1962. |
[25] | Z. Zhang, X. Li Mock theta functions in terms of $q$ -hypergeometric double sums, Int. J. Number Theory, 14 (2018), 1715–1728. |