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1. Introduction

Throughout this paper, we use the standard q-series notation in [5]:

(a; q)0 = 1, (a; q)n =

n∏
k=1

(1 − aqk−1), n = 1, 2, 3, · · · .

We also adopt the following compact notation for multiple q-shifted factorials:

(a1, a2, · · · , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is an integer or∞.
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The basic hypergeometric series rφs is defined by

rφs

[
a1, a2, · · · , ar

b1, · · · , bs
; q, z
]

=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(n

2)
]1+s−r

zn.

The theory of mock theta functions is a very important research area of the theory of the basic
hypergeometric series. Mock theta function was first introduced by Ramanujan in his last letter to
Hardy [24]. Ramanujan listed 17 mock theta functions and called them orders of 3, 5 and 7. But
he did not say explicitly what he meant and did not also give exact definition of order. Until now,
exact definition of order has still not been given. The study of mock theta functions has attracted many
experts and scholars. Recently, Patkowski [21] gave some new expansions for Ramanujan’s 10th-order,
7th-order, and 5th-order mock theta functions F2(q4), φ(q4) and χ1(q4) by establishing some new Bailey
pairs. In [19], Lovejoy and Osburn used Bailey pairs and Bailey transformation to obtain many mock
theta functions in terms of q-hypergeometric double sums and gave connections to known single-sum
mock theta functions. Then, Zhang and Li [25] derived some similar nice mock theta double sums
by the same method on the previous basis. Patkowski [22] obtained double-sum expansions for mock
theta functions of Andrew’s third-order ψ1(q) Ramanujan’s 7th-order φ(q), and 10th-order F2(q). Some
more recent investigations on this subject can be found in [9, 10, 17, 18].

As an example, double-sum expansion for 10th-order mock theta function F2(q) is restated as
follows [22, Theorem 2.2, (2.13)]:

∑
n≥0

∑
n≥ j≥0

(−1) jq2n2+2n+ j2+ j

(−q; q)2n+1(q2; q2)n− j(q2; q2) j(1 − q2 j+1)
= F2(q2),

where F2(q) =
∑
n≥0

qn2+n

(qn+1; q)n+1
.

In this paper, we make use of the following mock theta functions.
The second-order mock theta functions (see [20]):

A(q) =

∞∑
n=0

qn+1(−q2; q2)n

(q; q2)n+1
,

B(q) =

∞∑
n=0

qn(−q; q2)n

(q; q2)n+1
,

µ(q) =

∞∑
n=0

(−1)nqn2
(q; q2)n

(−q2; q2)2
n

.

The third-order mock theta functions (see [7]):

φ(q) =

∞∑
n=0

qn2

(−q2; q2)n
,

ψ(q) =

∞∑
n=1

qn2

(q; q2)n
,
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ν(q) =

∞∑
n=0

qn2+n

(−q; q2)n+1
.

The sixth-order mock theta functions (see [3]):

ψ6(q) =

∞∑
n=1

(−1)n−1qn2
(q; q2)n−1

(−q; q)2n−1
,

φ6(q) =

∞∑
n=0

(−1)nqn2
(q; q2)n

(−q; q)2n
,

ρ(q) =

∞∑
n=0

qn(n+1)/2(−q; q)n

(q; q2)n+1
,

σ(q) =

∞∑
n=0

q(n+2)(n+1)/2 (−q; q)n

(q; q2)n+1
.

For more details about mock theta functions, the readers can refer to [1–4, 6, 7, 23, 24].
Based on the above research results, we continue to do some research on double-sum expansions

for mock theta functions in this paper. The rest of this paper is arranged as follows. In Section 2, we
first provide a new q-series transformation formula in terms of series rearrangement method. And then
as applications, some new double sums for certain mock theta functions are given.

2. Main results

In this section, we give some double-sum representations for certain mock theta functions. First, in
the following Proposition 1, we establish a new q-series transformation formula by means of q-series
rearrangement.

Proposition 1. For |q| < 1 and |αab| < 1, we have that

∞∑
n=0

(q2/a,−λ/q; q2)n(αab)n

(αq2, λ; q2)n

=
(αa, αb; q2)∞

(αq2, αab/q2; q2)∞

∞∑
n=0

(1 − αq4n)(α, q2/a, q2/b; q2)n(−αab/q2)nqn2−n

(1 − α)(q2, αa, αb; q2)n

×

n∑
k=0

(q−2n, αq2n,−λ/q; q2)kq4k

(q2/b, αq2, λ; q2)k
. (2.1)

Proof. In terms of series rearrangement, the right-hand side of (2.1) equals that

∞∑
k=0

∞∑
n=k

(1 − αq4n)(α, q2/a, q2/b; q2)n(−αab/q2)nqn2−n

(1 − α)(q2, αa, αb; q2)n

(q−2n, αq2n,−λ/q; q2)kq4k

(q2/b, αq2, λ; q2)k

=

∞∑
k=0

∞∑
n=0

(1 − αq4n+4k)(α, q2/a, q2/b; q2)n+k(−αab/q2)n+kq(n+k)2−(n+k)

(1 − α)(q2, αa, αb; q2)n+k
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×
(q−2(n+k), αq2(n+k),−λ/q; q2)kq4k

(q2/b, αq2, λ; q2)k

=

∞∑
k=0

(α, q2/a,−λ/q; q2)k

(q2, αa, αb, αq2, λ; q2)k
(−αab)kqk2+k

∞∑
n=0

(1 − αq4n+4k)(αq2k, q2k+2/a, q2k+2/b; q2)n

(1 − α)(q2k+2, αaq2k, αbq2k; q2)n

× (q−2(n+k), αq2(n+k); q2)k(−αab)nqn2+2nk−3n

=

∞∑
k=0

(1 − αq4k)(q2/a,−λ/q; q2)k(α; q2)2k

(1 − α)(αa, αb, αq2, λ; q2)k
(αab)k

∞∑
n=0

(αq4k; q2)n(1 − αq4n+4k)
(q2; q2)n(1 − αq4k)

×
(q2k+2/a, q2k+2/b; q2)n

(αaq2k, αbq2k; q2)n
(−
αab
q2 )nqn2−n. (2.2)

Let q → q2, a → αq4k, b → q2k+2/a, c → q2k+2/b, d → ∞ in the following sum of a very-well-poised
6φ5 series [5, II.20]

6φ5

[
a, qa1/2, −qa1/2, b, c, d

a1/2, −a1/2, aq/b, aq/c, aq/d
; q, aq/bcd

]
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

. (2.3)

Then the second term of the right-hand side of (2.2) gives

(αq4k+2, αab/q2; q2)∞
(αaq2k, αbq2k; q2)∞

=
(αq2, αab/q2; q2)∞

(αa, αb; q2)∞

(αa, αb; q2)k

(αq2; q2)2k
.

The right-hand side of (2.2) yields

(αq2, αab/q2; q2)∞
(αa, αb; q2)∞

∞∑
k=0

(1 − αq4k)(q2/a, q2/b,−λ/q; q2)k(α; q2)2k

(1 − α)(αa, αb, q2/b, αq2, λ; q2)k
(αab)k (αa, αb; q2)k

(αq2; q2)2k

=
(αq2, αab/q2; q2)∞

(αa, αb; q2)∞

∞∑
k=0

(q2/a,−λ/b; q2)k

(αq2, λ; q2)k
(αab)k.

After some simplifications, we derive our desired result. This completes the proof. �

Next, as applications of the identity (2.1), in the following theorems we give some new double-sum
representations for certain mock theta functions.

Theorem 1. The following double-sum representation for the second-order mock theta function A(q)
is true:

A(q) = − q2 (−q; q2)2
∞

(q; q2)2
∞

∑
n≥0

∑
n≥k≥0

(−1)n+kqn2+k2−2n+3k−2nk(1 − q4n+1)(q; q2)n+k(−q2; q2)2
n

(1 − q)(q2; q2)n−k(−q; q2)2
n(−q2; q2)k(q; q2)k+1

. (2.4)

Proof. Let a = b = −1, α = q, λ = 0 in (2.1). Then, we derive that

∞∑
n=0

(−q2; q2)nqn

(q3; q2)n
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=
(−q,−q; q2)∞
(q3, q−1; q2)∞

∞∑
n=0

(1 − q4n+1)(q,−q2,−q2; q2)n

(1 − q)(q2,−q,−q; q2)n
(−1)nqn2−2n

×

n∑
k=0

(q−2n, q2n+1; q2)kq4k

(−q2, q3; q2)k
.

Multiplying both sides of the above equation by q
1−q and after certain simplifications, we get

∞∑
n=0

(−q2; q2)nqn+1

(q; q2)n+1

= −
q2(−q; q2)2

∞

(1 − q)(q; q2)2
∞

∞∑
n=0

1 − q4n+1

1 − q
(q; q2)n(−q2; q2)2

n

(q2; q2)n(−q; q2)2
n
(−1)nqn2−2n

×

n∑
k=0

(q−2n, q2n+1; q2)kq4k

(−q2, q3; q2)k

= − q2 (−q; q2)2
∞

(q; q2)2
∞

∑
n≥0

∑
n≥k≥0

(−1)n+kqn2+k2−2n+3k−2nk(1 − q4n+1)(q; q2)n+k(−q2; q2)2
n

(1 − q)(q2; q2)n−k(−q; q2)2
n(−q2; q2)k(q; q2)k+1

.

This completes the proof of the identity (2.4).
�

By taking a = −q, b = −q−1, α = q, λ = 0 in (2.1), we deduce the following identity

Corollary 1. The following double-sum representation for the second-order mock theta function B(q)
is true:

B(q) = −2q
(−q2; q2)2

∞

(q; q2)2
∞

∑
n≥0

∑
n≥k≥0

(−1)n+kqn2+k2−2n+3k−2nk(1 − q4n+1)(q; q2)n+k(−q; q2)n(−q; q2)n+1

(1 − q)(q2; q2)n−k(−q2,−1; q2)n(q2; q4)k+1
. (2.5)

Taking α = −1, λ = −q2, b = −q−1, a → 0 in (2.1), we can also attain the identity (2.6) for the
second-order mock theta function µ(q)

Corollary 2. The following double-sum representation for the second-order mock theta function µ(q)
is true:

µ(q) =
(q−1; q2)∞

2(−q2; q2)∞

∑
n≥0

∑
n≥k≥0

(1 + q4n+1)
(−1)kq2n2+k2−3n+3k−2nk(−1; q2)n+k(−q3; q2)n(q2; q4)k

(q2; q2)n−k(q−1; q2)n(−q2; q)2k(−q; q)2k
. (2.6)

For certain third-order mock theta functions, we can also gain the similar conclusions as follows.

Theorem 2. The following double-sum representations for the third-order mock theta functions
φ(q), ψ(q), ν(q) hold true:

φ(q) = −
(1 + q)(−q; q2)∞

(q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−3n+3k−2nk(1 − q4n−1)(q−1; q2)n+k(−q2; q2)n

(1 − q)(q2; q2)n−k(−q−1; q2)n(−q2; q2)2
k

(2.7)
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ψ(q) =
q(−q; q2)∞

(q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−n+3k−2nk(1 − q4n+1)(q; q2)n+k(−q2; q2)n

(q2; q2)n−k(−q; q2)n(−q2; q2)k(q; q2)k+1
(2.8)

ν(q) =
2(−q2; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−2n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q3; q2)n

(1 + q)(q2; q2)n−k(−1; q2)n(q6; q4)k
. (2.9)

Proof. For (2.7), taking α = q−1, λ = −q2, b = −1, a→ 0 in (2.1), we attain that

∞∑
n=0

qn2

(−q2; q2)n

=
(−q−1; q2)∞

(q; q2)∞

∞∑
n=0

1 − q4n−1

1 − q−1

(q−1,−q2; q2)n

(q2,−q−1; q2)n
(−1)nq2n2−3n

n∑
k=0

(q−2n, q2n−1; q2)k

(−q2,−q2; q2)k
q4k

= −
(1 + q)(−q; q2)∞

(q; q2)∞

∑
n≥0

∑
n≥k≥0

1 − q4n−1

1 − q
(−1)n+kq2n2+k2−3n+3k−2nk(q−1; q2)n+k(−q2; q2)n

(q2; q2)n−k(−q−1; q2)n(−q2; q2)2
k

.

This completes the proof of the identity (2.7).
For (2.8), set α = q, λ = 0, b = −1, a→ 0 in (2.1). We deduce that

∞∑
n=0

qn2+2n

(q3; q2)n

=
(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(1 − q4n+1)(q,−q2; q2)n

(1 − q)(q2,−q; q2)n
(−1)nq2n2−n

n∑
k=0

(q−2n, q2n+1; q2)k

(−q2, q3; q2)k
q4k

=
(−q; q2)∞
(q; q2)∞

∑
n≥0

∑
n≥k≥0

(1 − q4n+1)
(q; q2)n+k(−q2; q2)n

(q2; q2)n−k(−q; q2)n

×
(−1)n+kq2n2+k2−n+3k−2nk

(−q2, q3; q2)k
.

Multiplying both sides of the above identity by q
1−q , we get the following double-sum representation

for the third-order mock theta function ψ(q):

ψ(q) =

∞∑
n=0

qn2+2n+1

(q; q2)n+1
=

q(−q; q2)∞
(q; q2)∞

∑
n≥0

∑
n≥k≥0

(1 − q4n+1)
(q; q2)n+k(−q2; q2)n

(q2; q2)n−k(−q; q2)n

×
(−1)n+kq2n2+k2−n+3k−2nk

(−q2; q2)k(q; q2)k+1
.

This completes the proof of the identity (2.8).
For (2.9), taking α = −q, λ = 0, b = q−1, a→ 0 in (2.1), we obtain that

∞∑
n=0

qn2+n

(−q3; q2)n
=

(−1; q2)∞
(−q3; q2)∞

∞∑
n=0

(1 + q4n+1)(−q, q3; q2)n(−1)nq2n2−2n

(1 + q)(q2,−1; q2)n

×

n∑
k=0

(q−2n,−q2n+1; q2)kq4k

(q3,−q3; q2)k
. (2.10)
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Multiplying both sides of the identity (2.10) by 1
1+q and after applications as seen above, we get our

desired result (2.7). Thus we complete the proof of Theorem 2 by obtaining the Eq (2.9). �

Theorem 3. The following double-sum representations for the third-order mock theta functions
ψ6(q), φ6(q), ρ(q), σ(q) hold true:

ψ6(q) =
q(q; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)kq2n2+k2−n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q4; q4)n(q2; q4)k

(q2; q2)n−k(q; q)2n(−q; q)2k(−q; q)2k+1
(2.11)

φ6(q) =
(q−1; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)kq2n2+k2−3n+3k−2nk(1 + q4n−1)(−q−1; q2)n+k(−q2; q2)n(q2; q4)k

(1 + q−1)(q2; q2)n−k(q−1; q2)n(−q; q)2
2k

(2.12)

ρ(q2) =
2(−q2; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−2n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q3; q2)n(q4; q4)k

(q2; q2)n−k(−1; q2)n(q2; q)2k(q2; q4)k+1
(2.13)

σ(q2) =
q2(−q2; q2)∞

(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2+3k−2nk(1 + q4n+1)(−q; q2)n+k(q2; q4)n(q4; q4)k

(q2; q2)n−k(−q; q)2n(q2; q4)k+1(q; q)2k
. (2.14)

Proof. For (2.11), set α = −q, λ = −q2, b = −1, a→ 0 in (2.1). Then we obtain
∞∑

n=0

(q; q2)n(−1)nqn2+2n

(−q3,−q2; q2)n
=

(q; q2)∞
(−q3; q2)∞

∞∑
n=0

(1 + q4n+1)(−q,−q2; q2)nq2n2−n

(1 + q)(q2, q; q2)n

×

n∑
k=0

(q−2n,−q2n+1, q; q2)kq4k

(−q2,−q3,−q2; q2)k
.

After suitable simplifications, we derive
∞∑

n=0

(q; q2)n(−1)nqn2+2n

(−q2; q)2n

=
(q; q2)∞

(−q3; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)kq2n2+k2−n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q4; q4)n(q2; q4)k

(q2; q2)n−k(q; q)2n(−q; q)2k(−q; q)2k+1
.

Multiplying both sides of the above identity by q
1+q , we deduce that

∞∑
n=0

(q; q2)n(−1)nqn2+2n+1

(−q; q)2n+1

=
q(q; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)kq2n2+k2−n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q4; q4)n(q2; q4)k

(q2; q2)n−k(q; q)2n(−q; q)2k(−q; q)2k+1
.

This completes the proof of (2.11).
For (2.12), set α = −q−1, λ = −q2, b = −1, a→ 0 in (2.1). After some simplifications, we attain the

identity (2.12). Therefore, we omit the proof.
For (2.13), taking α = −q, λ = q3, b = q−1, a → 0 in (2.1) and after some simplifications, we get

that
∞∑

n=0

qn2+n(−q2; q2)n

(q6; q4)n
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=
(−1; q2)∞
(−q3; q2)∞

∞∑
n=0

(1 + q4n+1)(−q, q3; q2)nq2n2−2n

(1 + q)(q2,−1; q2)n

n∑
k=0

(q−2n,−q2n+1,−q2; q2)kq4k

(q3,−q3, q3; q2)k

=
2(−q2; q2)∞
(−q3; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−2n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q3; q2)n(−q2; q2)k

(1 + q)(q2; q2)n−k(−1; q2)n(q3; q2)k(q6; q4)k
.

Multiplying both sides of the above identity by 1
1−q2 and through a mass of complex computations, we

find the following double-sum representation for the sixth-order mock theta function ρ(q):

∞∑
n=0

qn2+n(−q2; q2)n

(q2; q4)n+1

=
2(−q2; q2)∞
(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2−2n+3k−2nk(1 + q4n+1)(−q; q2)n+k(q3; q2)n(q4; q4)k

(q2; q2)n−k(−1; q2)n(q2; q)2k(q2; q4)k+1
.

This completes the proof of the identity (2.13). For (2.14), take α = −q, λ = q3, b = q, a → 0 in (2.1).
Then we have that

∞∑
n=0

qn2+3n(−q2; q2)n

(q6; q4)n

=
(−q2; q2)∞
(−q3; q2)∞

∞∑
n=0

(1 + q4n+1)(−q, q; q2)n(−1)nq2n2

(1 + q)(q2,−q2; q2)n

n∑
k=0

(q−2n,−q2n+1,−q2; q2)k

(q,−q3, q3; q2)k
q4k

=
(−q2; q2)∞
(−q3; q2)∞

∑
n≥0

∑
n≥k≥0

(1 + q4n+1)(−q; q2)n+k(q2; q4)n(q4; q4)k(−1)n+kq2n2+k2+3k−2nk

(1 + q)(q2; q2)n−k(−q; q)2n(q6; q4)k(q; q)2k
.

In order to get our desired result, we multiply both sides of the above identity by q2

1−q2 . Thus, we have
that

∞∑
n=0

qn2+3n+2(−q2; q2)n

(q2; q4)n+1

=
q2(−q2; q2)∞

(−q; q2)∞

∑
n≥0

∑
n≥k≥0

(−1)n+kq2n2+k2+3k−2nk(1 + q4n+1)(−q; q2)n+k(q2; q4)n(q4; q4)k

(q2; q2)n−k(−q; q)2n(q2; q4)k+1(q; q)2k
.

�

3. Conclusions

Basic (or q-) polynomials and (or q-) hypergeometric functions are particularly applicable in many
diverse areas of mathematics, physics and other sciences. Here in our present investigation, we have
motivated by the work of Patkowski [22] and have studied the double-sum expansions for mock
theta functions. Then in terms of series rearrangement method, we have established a new q-series
transformation formula. As an applications, we have derived some new double-sum representations
for certain mock theta functions.

AIMS Mathematics Volume 7, Issue 9, 17225–17235.
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Studies of the special functions and q-polynomials are widely using in different branches of
mathematics. For example in [11], by make use of certain q-Chebyshev Polynomials, certain subclasses
of analytic and bi-univalent functions have been defined systematically. Just like the class defined
in [11], one can define a similar class by taking this newly established q-series transformation formula
instead of q-Chebyshev Polynomials. These kind of investigations can also be found in [8, 12–16].
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