Citation: İbrahim Aktaş. On some geometric properties and Hardy class of q-Bessel functions[J]. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203
[1] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge: Cambridge University Press, 1944. |
[2] | M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations (Lecture Notes in Mathematics 2056), Berlin: Springer-Verlag, 2012. |
[3] | M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge: Cambridge University Press, 2005. |
[4] | F. H. Jackson, The basic Gamma-Function and the Elliptic functions, Proc. R. Soc. Lond. A, 76 (1905), 127-144. doi: 10.1098/rspa.1905.0011 |
[5] | F. H. Jackson, The applications of basic numbers to Bessel's and Legendre's equations, Proc. Lond. Math. Soc., 3 (1905), 1-23. doi: 10.1112/plms/s2-3.1.1 |
[6] | H. T. Koelink, R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl., 186 (1994), 690-710. doi: 10.1006/jmaa.1994.1327 |
[7] | M. E. H. Ismail, The zeros of basic Bessel function, the functions Jν+αx(x), and associated orthogonal polynomials, J. Math. Anal. Appl., 86 (1982), 1-19. doi: 10.1016/0022-247X(82)90248-7 |
[8] | L. D. Abreu, A q-sampling theorem related to the q-Hankel transform, Proc. Amer. Math. Soc., 133 (2005), 1197-1203. doi: 10.1090/S0002-9939-04-07589-6 |
[9] | İ. Aktaş, Á. Baricz, Bounds for the radii of starlikeness of some q-Bessel functions, Results Math., 72 (2017), 947-963. doi: 10.1007/s00025-017-0668-6 |
[10] | İ. Aktaş, H. Orhan, On Partial sums of Normalized q-Bessel Functions, Commun. Korean Math. Soc., 33 (2018), 535-547. |
[11] | İ. Aktaş, H. Orhan, Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc., 57 (2020), 355–369. |
[12] | M. H. Annaby, Z. S. Mansour, O. A. Ashour, Sampling theorems associated with biorthogonal q-Bessel functions, J. Phys. A, 43 (2010), Art. No. 295204. doi: 10.1088/1751-8113/43/29/295204 |
[13] | M. E. H. Ismail, M. E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl., 135 (1988), 187-207. doi: 10.1016/0022-247X(88)90148-5 |
[14] | T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Hankel and Fourier transforms, Trans. Amer. Math. Soc., 333 (1992), 445-461. |
[15] | Á. Baricz, D. K. Dimitrov, I. Mező, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl., 435 (2016), 968-985. doi: 10.1016/j.jmaa.2015.10.065 |
[16] | Á. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica, 48 (2006), 127-136. |
[17] | P. L. Duren, Theory of $\mathcal{H}^{p}$ spaces, A series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 38, New York and London: Academic Press, 1970. |
[18] | S. Owa, M. Nunokawa, H. Saitoh, et al. Close-to-convexity, starlikeness, and convexity of certain analytic functions, App. Math. Letter., 15 (2002), 63-69. doi: 10.1016/S0893-9659(01)00094-5 |
[19] | H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc., 51 (1975), 109-116. doi: 10.1090/S0002-9939-1975-0369678-0 |
[20] | R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47 (1982), 309-314. doi: 10.4064/cm-47-2-309-314 |
[21] | P. J. Eenigenburg, F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J., 17 (1970), 335-346. doi: 10.1307/mmj/1029000519 |
[22] | I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. doi: 10.1006/jmaa.1993.1204 |
[23] | Y. C. Kim, H. M. Srivastava, Some families of generalized Hypergeometric functions associated with the Hardy space of analytic functions, Prod. Japan Acad., Seri A, 70 (1994), 41-46. doi: 10.3792/pjaa.70.41 |
[24] | S. Ponnusamy, The Hardy space of hypergeometric functions, Complex Var. Elliptic Equ., 29 (1996), 83-96. |
[25] | J. K. Prajapat, S. Maharana, D. Bansal, Radius of Starlikeness and Hardy Space of Mittag-Leffer Functions, Filomat, 32 (2018), 6475-6486. doi: 10.2298/FIL1818475P |
[26] | N. Yağmur, Hardy space of Lommel functions, Bull. Korean Math. Soc., 52 (2015), 1035-1046. doi: 10.4134/BKMS.2015.52.3.1035 |
[27] | N. Yağmur, H. Orhan, Hardy space of generalized Struve functions, Complex Var. Elliptic Equ., 59 (2014), 929-936. doi: 10.1080/17476933.2013.799148 |
[28] | J. Stankiewich, Z. Stankiewich, Some applications of Hadamard convolutions in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska, 40 (1986), 251-265. |
[29] | T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537. doi: 10.1090/S0002-9947-1962-0140674-7 |