Citation: Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang. On the construction, properties and Hausdorff dimension of random Cantor one pth set[J]. AIMS Mathematics, 2020, 5(4): 3138-3155. doi: 10.3934/math.2020202
[1] | J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178. doi: 10.1016/j.nahs.2019.03.004 |
[2] | H. Hu, X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 145 (2017), 4763-4771. doi: 10.1090/proc/13687 |
[3] | H. Hu, T. Yi, X. Zou, On spatial-temporal dynamics of Fisher-KPP equation with a shifting environment, Proc. Amer. Math. Soc., 148 (2020), 213-221. doi: 10.1090/proc/14659 |
[4] | H. Hu, X. Yuan, L. Huang, et al. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749. doi: 10.3934/mbe.2019286 |
[5] | Y. Tan, C. Huang, B. Sun, et al. Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130. doi: 10.1016/j.jmaa.2017.09.045 |
[6] | C. Huang, X. Long, L. Huang, et al. Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canad. Math. Bull., 2019. |
[7] | C. Huang, H. Zhang, J. Cao, et al. Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091. |
[8] | C. Huang, Y. Qiao, L. Huang, et al. Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differential Equations, 186 (2018), 1-26. |
[9] | C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019) 1950016. |
[10] | C. Huang, Z. Yang, T. Yi, et al. On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differential Equations, 256 (2014), 2101-2114. doi: 10.1016/j.jde.2013.12.015 |
[11] | C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear 433 density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337-3349. doi: 10.3934/cpaa.2019150 |
[12] | G. Rajchakit, A. Pratap, R. Raja, et al. Hybrid control scheme for projective Lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays, Mathematics, 7 (2019), 759. doi: 10.3390/math7080759 |
[13] | C. Huang, R. Su, J. Cao, et al. Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Math. Comput. Simul., 171 (2020), 127-135. doi: 10.1016/j.matcom.2019.06.001 |
[14] | C. Song, S. Fei, J. Cao, et al. Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics, 7 (2019), 599. |
[15] | X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 1-6. doi: 10.1016/j.aml.2019.106027 |
[16] | C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving nonreduced order method, Neurocomputing, 325 (2019), 283-287. doi: 10.1016/j.neucom.2018.09.065 |
[17] | C. Huang, B. Liu, X. Tian, L. Yang and X. Zhang, Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions, Neural Process. Lett., 49 (2019), 625-641. doi: 10.1007/s11063-018-9835-3 |
[18] | X. Yang, S. Wen, Z. Liu, et al. Dynamic properties of foreign exchange complex network, Mathematics, 7 (2019), 832. |
[19] | S. Kumari, R. Chugh, J. Cao, et al. Multi fractals of generalized multivalued iterated function systems in b-Metric spaces with applications, Mathematics, 7 (2019), 967. |
[20] | S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with sconvexity, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 46 (2019), 344-365. |
[21] | S. Kumari, M. Kumari, R. Chugh, Graphics for complex polynomials in Jungck-SP orbit, IAENG Int. J. Appl. Math., 49 (2019), 568-576. |
[22] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 5, Math Ann., 21 (1883), 545-591. doi: 10.1007/BF01446819 |
[23] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 6, Math Ann., 23 (1884), 453-488. doi: 10.1007/BF01446598 |
[24] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 1, Math Ann., 15 (1879), 1-7. doi: 10.1007/BF01444101 |
[25] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 2, Math Ann., 17 (1880), 355-358. doi: 10.1007/BF01446232 |
[26] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 3, Math Ann., 20 (1882), 113-121. doi: 10.1007/BF01443330 |
[27] | G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 4, Math Ann., 21 (1883), 51-58. doi: 10.1007/BF01442612 |
[28] | H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, 2 Eds. New York: Springer Verlag, 2004. |
[29] | R. L. Devaney, A First Course in Chaotic Dynamical Systems, Addison Wesley Pub. Company, Inc, Holland, 1992. |
[30] | A. F. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Camb. Phil. Soc., 61 (1965), 679-694. doi: 10.1017/S0305004100039049 |
[31] | K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2 Eds., John Wiley and Sons, Chichester, 1990. |
[32] | K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3 Eds., John Wiley and Sons, Chichester, 2014. |
[33] | A. Kumar, M. Rani, R. Chugh, New 5-adic Cantor sets and fractal string, SpringerPlus, 2 (2013), 1-7. doi: 10.1186/2193-1801-2-1 |
[34] | Ashish, M. Rani, R. Chugh, Study of Variants of Cantor Sets Using Iterated Function System, Gen. Math. Notes, 23 (2014), 45-58. |
[35] | D. D. Pestana, S. M. J. Aleixo, L. Rocha, Hausdorff Dimension of the Random Middle Third Cantor Set, Proceedings of the ITI 2009 31st Int. Conf. on Information Technology Interfaces, June 22-25, Cavtat, Croatia, 2009. |
[36] | M. J. Islam, M. S. Islam, Lebesgue Measure of Generalized Cantor Set, Ann. Pure Appl. Math., 10 (2015), 75-87. |
[37] | C. Chen. A class of random Cantor sets, Real Anal Exchange, 42 (2017), 79-120. |
[38] | H. L. Royden, P. M. Fitzpatrick, Real Analysis, 4 Eds., Pearson Education, Inc, China, 2010. |
[39] | P. Sahoo, Probability and Mathematical Statistics, University of Louisville, USA, 2013. |