Citation: Motohiro Sobajima, Kentarou Yoshii. Lp-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations[J]. AIMS Mathematics, 2018, 3(1): 21-34. doi: 10.3934/Math.2018.1.21
[1] | R. Beals, R. Wong, Special functions, Cambridge Studies in Advanced Mathematics, 126, Cambridge University Press, Cambridge, 2010. |
[2] | J.-F. Bony, R. Carles, D. Hafner, et al. Scattering theory for the Schrödinger equation with repulsive potential, J. Math. Pures Appl., 84 (2005), 509-579. |
[3] | T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Amer. Mathematical Society, 2003. |
[4] | J. D. Dollard, C. N. Friedman, Asymptotic behavior of solutions of linear ordinary differential equations, J. Math. Anal. Appl., 66 (1978), 394-398. |
[5] | K. -J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, 2000. |
[6] | J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1985. |
[7] | T. Ikebe, T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Ration. Mech. An., 9 (1962), 77-92. |
[8] | A. Ishida, On inverse scattering problem for the Schrödinger equation with repulsive potentials, J. Math. Phys., 55 (2014), 082101. |
[9] | T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-New York, 1966. |
[10] | F. Nicoleau, Inverse scattering for a Schrodinger operator with a repulsive potential, Acta Math. Sin., 22 (2006), 1485-1492. |
[11] | G. Metafune, M. Sobajima, An elementary proof of asymptotic behavior of solutions of u'' = Vu, preprint (arXiv: 1405. 5659). Available from: http://arxiv.org/abs/1405.5659. |
[12] | N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Jpn, 34 (1982), 677-701. |
[13] | F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York-London, 1974. |
[14] | H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Mathematics, 204, Marcel Dekker, New York, 1997. |