In this paper, we study a system of viscous conservation laws given by a form of a symmetric parabolic system. We consider the system in the one-dimensional half space and show existence of a degenerate stationary solution which exists in the case that one characteristic speed is equal to zero. Then we show the uniform a priori estimate of the perturbation which gives the asymptotic stability of the degenerate stationary solution. The main aim of the present paper is to show the a priori estimate without assuming the negativity of non-zero characteristics. The key to proof is to utilize the Hardy inequality in the estimate of low order terms.
Citation: Tohru Nakamura. Asymptotic stability of degenerate stationary solution to a system of viscousconservation laws in half line[J]. AIMS Mathematics, 2018, 3(1): 35-43. doi: 10.3934/Math.2018.1.35
In this paper, we study a system of viscous conservation laws given by a form of a symmetric parabolic system. We consider the system in the one-dimensional half space and show existence of a degenerate stationary solution which exists in the case that one characteristic speed is equal to zero. Then we show the uniform a priori estimate of the perturbation which gives the asymptotic stability of the degenerate stationary solution. The main aim of the present paper is to show the a priori estimate without assuming the negativity of non-zero characteristics. The key to proof is to utilize the Hardy inequality in the estimate of low order terms.
[1] | S. Kawashima, T. Nakamura, S. Nishibata, et al. Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235. |
[2] | S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500. |
[3] | S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J., 40 (1988), 449-464. |
[4] | T.-P. Liu, A. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293-308. |
[5] | T.-P. Liu and Y. Zeng, Compressible Navier-Stokes equations with zero heat conductivity, J. Differ. Equations, 153 (1999), 225-291. |
[6] | T. Nakamura, Degenerate boundary layers for a system of viscous conservation laws, Anal. Appl. (Singap.), 14 (2016), 75-99. |
[7] | T. Nakamura and S. Nishibata, Existence and asymptotic stability of stationary waves for symmetric hyperbolic-parabolic systems in half line, Math. Models and Meth. in Appl. Sci., 27 (2017), 2071-2110, |
[8] | T. Nakamura and S. Nishibata, Convergence rate toward planar stationary waves for compressible viscous fluid in multi-dimensional half space, SIAM J. Math. Anal., 41 (2009), 1757-1791. |
[9] | T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651-670. |
[10] | T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differ. Equations, 241 (2007), 94-111. |
[11] | Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275. |
[12] | Y. Ueda, T. Nakamura and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762. |
[13] | T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. |
[14] | N. Usami, S. Nishibata and T. Nakamura, Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space, to appear in Kinet. Relat. Models. |