Citation: Siamak Khalehoghli, Hamidreza Rahimi, Madjid Eshaghi Gordji. Fixed point theorems in R-metric spaces with applications[J]. AIMS Mathematics, 2020, 5(4): 3125-3137. doi: 10.3934/math.2020201
[1] | C. T. Aage, J. N. Salunke, Fixed points of weak contractions in cone metric spaces, Ann. Funct. Anal., 2 (2011), 71. |
[2] | M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420. |
[3] | A. N. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., (2013), 163. |
[4] | S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, et al. A new survey: Cone metric spaces, J. Int. Math. Virtual Institute., 9 (2019), 93-121. |
[5] | H. Baghani, M. E. Gordji, M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl., 18 (2016), 465-477. doi: 10.1007/s11784-016-0297-9 |
[6] | S. Banach, Sur les operations dans les ensembles abstrits et leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181. |
[7] | L. E. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math Ann., 71 (1912), 97-115. |
[8] | V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal., 72 (2010), 1-14. |
[9] | V. V. Chistyakov, Modular metric spaces, II: application to superposition operators, Nonlinear Anal., 72 (2010), 15-30. |
[10] | S. H. Cho, J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011 (2011), Article number: 87. |
[11] | L. Ciric, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Beograd, 2003. |
[12] | G. Deng, H. Huang, M. Cvetkovic, et al. Cone valued measure of noncompactness and related fixed point theorems, Bull. Int. Math. Virtual Inst., 8 (2018), 233-243. |
[13] | M. Eshaghi Gordji, H Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algeb., 6 (2017), 251-260. |
[14] | M. Eshaghi Gordji, M. Ramezani, M. De La Sen, et al. On orthogonal sets and Banach fixed point theorem, Fixed Point Theory., 18 (2017), 569-578. doi: 10.24193/fpt-ro.2017.2.45 |
[15] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476. |
[16] | D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341 (2008), 876-882. doi: 10.1016/j.jmaa.2007.10.065 |
[17] | S. Kakutani, A generalization of Brouwer fixed point theorem, Duke Math. J., 8 (1941), 457-459. doi: 10.1215/S0012-7094-41-00838-4 |
[18] | M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-953. |
[19] | M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129. |
[20] | W. Kirk, N. Shahzad, Fixed Point Theory in Disatnce Spaces, Springer International Publishing Switzeralan, 2014. |
[21] | N. Mehmood, A. Al Rawashdeh, S. Radenovic, New fixed point results for E-metric spaces, Positivity, 23 (2019), 1101-1111. |
[22] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Mafh., 30 (1969), 475-488. |
[23] | F. J. Nash, Equilibrium points in n-person game, Proc. Natl. Acad. Sci. USA., 36 (1950), 48-49. doi: 10.1073/pnas.36.1.48 |
[24] | J. J. Nieto, R. Rodri Guez-Lo'Pez, Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations, Order 22 (2005), 223-239. |
[25] | M. A. Noor, An iterative algorithm for variational inequalities, J. Math. Anal. Appl., 158 (1991), 448-455. |
[26] | Z. Pales, I-R. Petre, Iterative fixed point theorems in E-metric spaces, Acta Math. Hung., 140 (2013), 134-144. |
[27] | E. De Pascale, G. Marino, P. Pietramala, The use of the E-metric spaces in the search for fixed points, Matematiche, 48 (1993), 367-376. |
[28] | M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127-132. |
[29] | M. Ramezani, H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl., 8 (2017), 23-28. |
[30] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435-1443. |
[31] | A. Al-Rawashdeh, W. Shatanawi, M. Khandaqji, Normed ordered and E-metric spaces, Int. J. Math. Sci., 2012 (2012), ID 272137. |
[32] | W. Rudin, Principles of mathematical analysis, thired edition, McGraw-Hill, Inc, 1976. |
[33] | V. Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019. |
[34] | D. Turkoglu, M. Abuloha, A. bdeljawad T: KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Anal., 72 (2010), 348-353. |