Citation: Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming[J]. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
[1] | S. Amin, A. Cardenas and S. Sastry, Safe and secure networked control systems under denial-of-service attacks, in "Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control," Springer-Verlag, (2009), 31-45. doi: 10.1007/978-3-642-00602-9_3 |
[2] | S. Amin, X. Litrico, S. Sastry and A. Bayen, Stealthy deception attacks on water scada systems, In "Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control," ACM, (2010),161-170. doi: 10.1145/1755952.1755976 |
[3] | J.-P. Aubin, "Viability Theory," Systems and Control: Foundations and Applications, Birkhäuser, Boston, MA, 1991. |
[4] | J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints, SIAM Journal on Control and Optimization, 47 (2008), 2348-2380. doi: 10.1137/060659569 |
[5] | M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of {Hamilton-Jacobi-Bellman} Equations," Birkhäuser, Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1 |
[6] | E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Communications in Partial Differential Equations, 15 (1990), 1713-1742. doi: 10.1080/03605309908820745 |
[7] | E. S. Canepa and C. G. Claudel, Exact solutions to traffic density estimation problems involving the Lighthill-Whitman-Richards traffic flow model using Mixed Integer Linear Programing, In "Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems", (2012), 832-839. |
[8] | P. D. Christofides, "Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes," Birkhäuser, Boston, MA, 2001. doi: 10.1007/978-1-4612-0185-4 |
[9] | C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory, IEEE Transactions on Automatic Control, 55 (2010), 1142-1157. doi: 10.1109/TAC.2010.2041976 |
[10] | C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part {II: Computational methods}, IEEE Transactions on Automatic Control, 55 (2010), 1158-1174. doi: 10.1109/TAC.2010.2045439 |
[11] | C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, SIAM Journal on Control and Optimization, 49 (2011), 383-402. doi: 10.1137/090778754 |
[12] | M. G. Crandall and P.-L. Lions, Viscosity solutions of {Hamilton-Jacobi equations}, Transactions of the American Mathematical Society, 277 (1983), 1-42. doi: 10.1090/S0002-9947-1983-0690039-8 |
[13] | C. Daganzo, The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research, 28B (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7 |
[14] | C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions, Transportation Research B, 39B (2005), 187-196. doi: 10.1016/j.trb.2004.04.003 |
[15] | C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications, Networks and Heterogeneous Media, 1 (2006), 601-619. doi: 10.3934/nhm.2006.1.601 |
[16] | H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM Journal of Control and Optimization, 31 (1993), 257-272. doi: 10.1137/0331016 |
[17] | J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, Transportation Research Part C: Emerging Technologies, 18 (2010), 568-583. doi: 10.1016/j.trc.2009.10.006 |
[18] | B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring, in "Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services," ACM, (2008), 15-28. doi: 10.1145/1378600.1378604 |
[19] | M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and sensor delays, Systems & Control Letters, 57 (2008), 750-758. doi: 10.1016/j.sysconle.2008.02.005 |
[20] | P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model, Transportation Research Part B: Methodological, 45 (2011), 1727-1748. doi: 10.1016/j.trb.2011.07.004 |
[21] | K. Moskowitz, Discussion of "freeway level of service as influenced by volume and capacity characteristics' by D.R. Drew and C. J. Keese, Highway Research Record, 99 (1965), 43-44. |
[22] | G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III). Transporation Research B, 27B (1993), 281-313. |
[23] | R. C. Smith and M. A. Demetriou, "Research Directions in Distributed Parameter Systems," SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898717525 |
[24] | I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation laws, International Journal of Robust and Nonlinear Control, 16 (2006), 733-748. doi: 10.1002/rnc.1099 |
[25] | D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity model for traffic state reconstruction, Applied Research Mathematics eXpress (ARMX), 1 (2010), 1-35. |
[26] | http://traffic.berkeley.edu/. |
[27] | http://pems.dot.ca.gov. |