Research article

Nonlinear diffusion on networks: Perturbations and consensus dynamics

  • Received: 15 July 2024 Revised: 13 September 2024 Accepted: 08 November 2024 Published: 04 December 2024
  • In this paper, we study a class of equations representing nonlinear diffusion on networks. A particular instance of our model could be seen as a network equivalent of the porous-medium equation. We are interested in studying perturbations of such a system and describing the consensus dynamics. The nonlinearity of the equations gives rise to potentially intricate structures of equilibria that could intersect the consensus space, creating singularities. For the unperturbed case, we characterize the sets of equilibria by exploiting the symmetries under group transformations of the nonlinear vector field. Under small perturbations, we obtain a slow-fast system. Thus, we analyze the slow-fast dynamics near the singularities on the consensus space. The analysis at this stage is carried out for complete networks, allowing a detailed characterization of the system. We provide a linear approximation of the intersecting branches of equilibria at the singular points; as a consequence, we show that, generically, the singularities on the consensus space turn out to be transcritical. We prove under local assumptions the existence of canard solutions. For generic graph structures, assuming more strict conditions on the perturbation, we prove the existence of a maximal canard, which coincides with the consensus subspace. In addition, we validate by numerical simulations the principal findings of our main theory, extending the study to non-complete graphs. Moreover, we show how the delayed loss of stability associated with the canards induces transient spatio-temporal patterns.

    Citation: Riccardo Bonetto, Hildeberto Jardón Kojakhmetov. Nonlinear diffusion on networks: Perturbations and consensus dynamics[J]. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058

    Related Papers:

  • In this paper, we study a class of equations representing nonlinear diffusion on networks. A particular instance of our model could be seen as a network equivalent of the porous-medium equation. We are interested in studying perturbations of such a system and describing the consensus dynamics. The nonlinearity of the equations gives rise to potentially intricate structures of equilibria that could intersect the consensus space, creating singularities. For the unperturbed case, we characterize the sets of equilibria by exploiting the symmetries under group transformations of the nonlinear vector field. Under small perturbations, we obtain a slow-fast system. Thus, we analyze the slow-fast dynamics near the singularities on the consensus space. The analysis at this stage is carried out for complete networks, allowing a detailed characterization of the system. We provide a linear approximation of the intersecting branches of equilibria at the singular points; as a consequence, we show that, generically, the singularities on the consensus space turn out to be transcritical. We prove under local assumptions the existence of canard solutions. For generic graph structures, assuming more strict conditions on the perturbation, we prove the existence of a maximal canard, which coincides with the consensus subspace. In addition, we validate by numerical simulations the principal findings of our main theory, extending the study to non-complete graphs. Moreover, we show how the delayed loss of stability associated with the canards induces transient spatio-temporal patterns.



    加载中


    [1] C. O. Aguilar, B. Gharesifard, Necessary conditions for controllability of nonlinear networked control systems, in 2014 American Control Conference, 2014, 5379–5383. https://doi.org/10.1109/ACC.2014.6859170
    [2] S. Ahmadizadeh, I. Shames, S. Martin, D. Nešić, On eigenvalues of laplacian matrix for a class of directed signed graphs, Linear Algebra Appl., 523 (2017), 281–306. https://doi.org/10.1016/j.laa.2017.02.029 doi: 10.1016/j.laa.2017.02.029
    [3] C. Altafini, Consensus problems on networks with antagonistic interactions, IEEE Trans. Autom. Control, 58 (2013), 935–946. https://doi.org/10.1109/TAC.2012.2224251 doi: 10.1109/TAC.2012.2224251
    [4] D. Avitabile, M. Desroches, R. Veltz, M. Wechselberger, Local theory for spatio-temporal canards and delayed bifurcations, SIAM J. Math. Anal., 52 (2020), 5703–5747. https://doi.org/10.1137/19M1306610 doi: 10.1137/19M1306610
    [5] L. Beineke, R. Wilson, Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2004.
    [6] C. Bick, E. Gross, H. Harrington, M. Schaub, What are higher-order networks, SIAM Rev, 65 (2023), 686–731. https://doi.org/10.1137/21M1414024 doi: 10.1137/21M1414024
    [7] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University Press, 1993.
    [8] J. C. Bronski, L. DeVille, Spectral theory for dynamics on graphs containing attractive and repulsive interactions, SIAM J. Appl. Math., 74 (2014), 83–105. https://doi.org/10.1137/130913973 doi: 10.1137/130913973
    [9] T. Carletti, M. Asllani, D. Fanelli, V. Latora, Nonlinear walkers and efficient exploration of congested networks, Phys. Rev. Res., 2 (2020), 033012. https://doi.org/10.1103/PhysRevResearch.2.033012 doi: 10.1103/PhysRevResearch.2.033012
    [10] J. Carr, Applications of Centre Manifold Theory, Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, 1979.
    [11] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15 (1943), 1–89. https://doi.org/10.1103/RevModPhys.15.1 doi: 10.1103/RevModPhys.15.1
    [12] P. Chossat, R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems, World Scientific Publishing Company, 2000.
    [13] P. De Maesschalck, F. Dumortier, R. Roussarie, Canard Cycles, Springer Cham, 2021. https://doi.org/10.1007/978-3-030-79233-6
    [14] P. De Maesschalck, R. Huzak, Slow divergence integrals in classical liénard equations near centers, J. Dyn. Differ. Equations, 27 (2015), 177–185. https://doi.org/10.1007/s10884-014-9358-1 doi: 10.1007/s10884-014-9358-1
    [15] G. De Pasquale, M. Valcher, Tripartite and sign consensus for clustering balanced social networks, in 2021 American Control Conference (ACC), (2021), 3056–3061.
    [16] A. Doelman, Pattern formation in reaction-diffusion systems—an explicit approach, in Complexity Science: An Introduction, World Scientific, Singapore, (2019), 129–182.
    [17] F. Dumortier, Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst., 10 (2011), 65–85. https://doi.org/10.1007/s12346-011-0038-9 doi: 10.1007/s12346-011-0038-9
    [18] M. Engel, H. Jardón-Kojakhmetov, Extended and symmetric loss of stability for canards in planar fast-slow maps, SIAM J. Appl. Dyn. Syst., 19 (2020), 2530–2566. https://doi.org/10.1137/20M1313611 doi: 10.1137/20M1313611
    [19] C. Falcó, From random walks on networks to nonlinear diffusion, Phys. Rev. E, 106 (2022), 054103. https://doi.org/10.1103/PhysRevE.106.054103 doi: 10.1103/PhysRevE.106.054103
    [20] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31 (1979), 53–98.
    [21] J. P. Françoise, C. Piquet, A. Vidal, Enhanced delay to bifurcation, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 825–831. https://doi.org/10.36045/bbms/1228486410 doi: 10.36045/bbms/1228486410
    [22] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math., 6 (1939), 239–250.
    [23] W. Fulton, J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics, Springer, New York, 1991.
    [24] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
    [25] M. Golubitsky, I. Ian Stewart, Nonlinear dynamics of networks : the groupoid formalism, Bull. Amer. Math. Soc., 43 (2006), 305–365. https://doi.org/10.1090/S0273-0979-06-01108-6 doi: 10.1090/S0273-0979-06-01108-6
    [26] M. Golubitsky, I. Stewart, D. Schaeffer, Singularities and Groups in Bifurcation Theory: Volume II, Springer, New York, 2012.
    [27] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
    [28] W. S. Gurney, R. M. Nisbet, The regulation of inhomogeneous populations, J. Theor. Biol., 52 (1975), 441–457. https://doi.org/10.1016/0022-5193(75)90011-9 doi: 10.1016/0022-5193(75)90011-9
    [29] M. W. Hirsch, S. Smale, R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Academic Press, Cambridge, 2013.
    [30] M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Springer Berlin, Heidelberg, 2006.
    [31] M. Homs-Dones, K. Devriendt, R. Lambiotte, Nonlinear consensus on networks: Equilibria, effective resistance, and trees of motifs, SIAM J. Appl. Dyn. Syst., 20 (2021), 1544–1570. https://doi.org/10.1137/20M1376844 doi: 10.1137/20M1376844
    [32] H. Jardón-Kojakhmetov, C. Kuehn, On fast–slow consensus networks with a dynamic weight, J. Nonlinear Sci., 30 (2020), 2737–2786. https://doi.org/10.1007/s00332-020-09634-9 doi: 10.1007/s00332-020-09634-9
    [33] H. Jardón-Kojakhmetov, C. Kuehn, A survey on the blow-up method for fast-slow systems, preprint, arXiv: 1901.01402.
    [34] M. Krupa, P. Szmolyan, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 14 (2001), 1473–1491. https://doi.org/10.1088/0951-7715/14/6/304 doi: 10.1088/0951-7715/14/6/304
    [35] C. Kuehn, Multiple Time Scale Dynamics, Springer Cham, Switzerland, 2015.
    [36] C. Kuehn, A remark on geometric desingularization of a non-hyperbolic point using hyperbolic space, J. Phys. Conf. Ser., 727 (2016), 012008. https://doi.org/10.1088/1742-6596/727/1/012008 doi: 10.1088/1742-6596/727/1/012008
    [37] L. Landau, E. Lifshitz, The Classical Theory of Fields, Elsevier Science, New York, 2013.
    [38] L. Leibenzon, The motion of a gas in a porous medium. complete works, vol. 2, acad, Sciences URSS, 63 (1930), 8–9.
    [39] J. Liu, X. Chen, T. Başar, M. Belabbas, Exponential convergence of the discrete- and continuous-time altafini models, IEEE Trans. Autom. Control, 62 (2017), 6168–6182. https://doi.org/10.1109/TAC.2017.2700523 doi: 10.1109/TAC.2017.2700523
    [40] P. Maesschalck, Planar canards with transcritical intersections, Acta Appl. Math., 137 (2015), 159–184. https://doi.org/10.1007/s10440-014-9994-9 doi: 10.1007/s10440-014-9994-9
    [41] M. Muskat, The flow of homogeneous fluids through porous media, Soil Sci., 46 (1938), 169.
    [42] M. Newman, Networks, Oxford University Press, Oxford, 2018.
    [43] S. Nosrati, M. Shafiee, M. Menhaj, Dynamic average consensus via nonlinear protocols, Automatica, 48 (2012), 2262–2270. https://doi.org/10.1016/j.automatica.2012.06.031 doi: 10.1016/j.automatica.2012.06.031
    [44] K. M. Page, P. K. Maini, N. A. Monk, Complex pattern formation in reaction–diffusion systems with spatially varying parameters, Physica D, 202 (2005), 95–115. https://doi.org/10.1016/j.physd.2005.01.022 doi: 10.1016/j.physd.2005.01.022
    [45] M. Peng, X. Yi, R. Cheng, Rich dynamics caused by diffusion, Nonlinear Dyn, 111 (2023), 9201–9213. https://doi.org/10.1007/s11071-023-08307-y doi: 10.1007/s11071-023-08307-y
    [46] M. Prayitno, S. Utama, S. Aminah, D. Silaban, Properties of adjacency, in-degree laplacian, and out-degree laplacian matrices of directed cyclic sun graph, in AIP Conference Proceedings, 2192 (2019), 040011. https://doi.org/10.1063/1.5139137
    [47] A. Rahimabadi, H. Benali, Extended fractional-polynomial generalizations of diffusion and fisher–kpp equations on directed networks, Chaos, Soliton Fractals, 174 (2023), 113771. https://doi.org/10.1016/j.chaos.2023.113771 doi: 10.1016/j.chaos.2023.113771
    [48] W. Ren, R. Beard, E. Atkins, A survey of consensus problems in multi-agent coordination, in Proceedings of the 2005, American Control Conference, (2005), 1859–1864. https://doi.org/10.1109/ACC.2005.1470239
    [49] J. Rotman, An Introduction to the Theory of Groups, Springer, New York, 1999.
    [50] R. Saber, R. Murray, Consensus protocols for networks of dynamic agents, in Proceedings of the 2003 American Control Conference, 2 (2003), 951–956.
    [51] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer, New York, 2001.
    [52] R. Sahasrabuddhe, L. Neuhäuser, R. Lambiotte, Modelling non-linear consensus dynamics on hypergraphs, J. Phys. Complex, 2 (2021), 025006. https://doi.org/10.1088/2632-072X/abcea3 doi: 10.1088/2632-072X/abcea3
    [53] G. Shi, C. Altafini, J. Baras, Dynamics over signed networks, SIAM Rev., 61 (2019), 229–257. https://doi.org/10.1137/17M1134172 doi: 10.1137/17M1134172
    [54] M. J. Simpson, R. E. Baker, S. W. McCue, Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models, Phys. Rev. E, 83 (2011), 021901. https://doi.org/10.1103/PhysRevE.83.021901 doi: 10.1103/PhysRevE.83.021901
    [55] V. Srivastava, J. Moehlis, F. Bullo, On bifurcations in nonlinear consensus networks, J. Nonlinear Sci., 21 (2011), 875–895. https://doi.org/10.1007/s00332-011-9103-4 doi: 10.1007/s00332-011-9103-4
    [56] J. L. Vázquez, The porous medium equation: mathematical theory, Oxford University Press, Oxford, 2007.
    [57] J. Veerman, E. Kummel, Diffusion and consensus on weakly connected directed graphs, Linear Algebra Appl., 578 (2019), 184–206. https://doi.org/10.1016/j.laa.2019.05.014 doi: 10.1016/j.laa.2019.05.014
    [58] J. Veerman, R. Lyons, A primer on laplacian dynamics in directed graphs, preprint, arXiv: 2002.02605.
    [59] A. Vidal, J. P. Françoise, Canards cycles in global dynamics, Int. J. Bifurcation Chaos, 22 (2012), 1250026. https://doi.org/10.1142/S0218127412500265 doi: 10.1142/S0218127412500265
    [60] M. Wechselberger, Geometric Singular Perturbation Theory Beyond the Standard Form, Springer Cham, Cham, 2020. https://doi.org/10.1007/978-3-030-36399-4
    [61] J. Wei, X. Yi, H. Sandberg, K. Johansson, Nonlinear consensus protocols with applications to quantized communication and actuation, IEEE Trans. Control Network Syst., 6 (2019), 598–608. https://doi.org/10.1109/TCNS.2018.2860461 doi: 10.1109/TCNS.2018.2860461
    [62] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 2003.
    [63] S. Wolfram, The reform of mathematical notation, Wolfram Research, 2013. Available from: https://content.wolfram.com/sites/39/2015/02/MathematicalNotation-SW.pdf.
    [64] H. Zhang, J. Chen, Bipartite consensus of general linear multi-agent systems, in 2014 American Control Conference, (2014), 808–812. https://doi.org/10.1109/ACC.2014.6858991
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(302) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog