In this paper, we are concerned with the number of critical points of solutions of nonlinear elliptic equations in a domain $ D $ of the sphere and their index.
Citation: Francesca Gladiali. On the critical points of solutions of PDE: The case of concentrating solutions on the sphere[J]. Networks and Heterogeneous Media, 2024, 19(3): 1336-1343. doi: 10.3934/nhm.2024057
In this paper, we are concerned with the number of critical points of solutions of nonlinear elliptic equations in a domain $ D $ of the sphere and their index.
[1] | F. Gladiali, M. Grossi, On the number of critical points of solutions of semilinear equations in $\Bbb R^2$, Am. J. Math., 144 (2022), 1221–1240. https://doi.org/10.1353/ajm.2022.0028 doi: 10.1353/ajm.2022.0028 |
[2] | F. Gladiali, M. Grossi, On the critical points of solutions of pde in non-convex settings: The case of concentrating solutions, J. Funct. Anal., 287 (2024), 110620. https://doi.org/10.1016/j.jfa.2024.110620 doi: 10.1016/j.jfa.2024.110620 |
[3] | S. Y. A. Chang, M. J. Gursky, P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differ. Equ., 1 (1993), 205–229. https://doi.org/10.1007/BF01191617 doi: 10.1007/BF01191617 |
[4] | S. Y. A. Chang, P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215–259. https://doi.org/10.1007/BF02392560 doi: 10.1007/BF02392560 |
[5] | C. C. Chen, C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55 (2002), 728–771. https://doi.org/10.1002/cpa.3014 doi: 10.1002/cpa.3014 |
[6] | J. L. Kazdan, F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math., 101 (1975), 317–331. https://doi.org/10.2307/1970993 doi: 10.2307/1970993 |
[7] | E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Commun. Math. Phys., 143 (1992), 501–525. https://doi.org/10.1007/BF02099262 doi: 10.1007/BF02099262 |
[8] | E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Part Ⅱ, Commun. Math. Phys., 174 (1995), 229–260. https://doi.org/10.1007/BF02099602 doi: 10.1007/BF02099602 |
[9] | S. Chanillo, M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys., 160 (1994), 217–238. https://doi.org/10.1007/BF02103274 doi: 10.1007/BF02103274 |
[10] | M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., 46 (1993), 27–56. https://doi.org/10.1002/cpa.3160460103 doi: 10.1002/cpa.3160460103 |
[11] | L. A. Caffarelli, Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: An existence theorem, Commun. Math. Phys., 168 (1995), 321–336. https://doi.org/10.1007/BF02101552 doi: 10.1007/BF02101552 |
[12] | W. Ding, J. Jost, J. Li, G. Wang, Existence results for mean field equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 16 (1999), 653–666. https://doi.org/10.1016/S0294-1449(99)80031-6 doi: 10.1016/S0294-1449(99)80031-6 |
[13] | J. Hong, Y. Kim, P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230–2233. https://doi.org/10.1103/PhysRevLett.64.2230 doi: 10.1103/PhysRevLett.64.2230 |
[14] | M. Nolasco, G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., 9 (1999), 31–94. https://doi.org/10.1007/s005260050132 doi: 10.1007/s005260050132 |
[15] | M. Nolasco, G. Tarantello, Vortex condensates for the SU(3) Chern-Simons theory, Commun. Math. Phys., 213 (2000), 599–639. https://doi.org/10.1007/s002200000252 doi: 10.1007/s002200000252 |
[16] | J. Spruck, Y. S. Yang, Topological solutions in the self-dual Chern-Simons theory: Existence and approximation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 12 (1995), 75–97. https://doi.org/10.1016/S0294-1449(16)30168-8 doi: 10.1016/S0294-1449(16)30168-8 |
[17] | J. Li, L. Sun, Y. Yang, The boundary value problem for the mean field equation on a compact Riemann surface, Sci. China Math., 66 (2023), 115–142. https://doi.org/10.1007/s11425-021-1962-5 doi: 10.1007/s11425-021-1962-5 |
[18] | M. Grossi, H. Ohtsuka, T. Suzuki, Asymptotic non-degeneracy of the multiple blow-up solutions to the Gel'fand problem in two space dimensions, Adv. Differ. Equ., 16 (2011), 145–164. https://doi.org/10.57262/ade/1355854333 doi: 10.57262/ade/1355854333 |
[19] | Y. Y. Li, Harnack type inequality: The method of moving planes, Commun. Math. Phys., 200 (1999), 421–444. https://doi.org/10.1007/s002200050536 doi: 10.1007/s002200050536 |
[20] | K. Nagasaki, T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal., 3 (1990), 173–188. https://doi.org/10.3233/ASY-1990-3205 doi: 10.3233/ASY-1990-3205 |
[21] | H. Ohtsuka, T. Sato, Refinement of asymptotic behavior of the eigenvalues for the linearized Liouville-Gel'fand problem, Nonlinear Anal., 240 (2024), 113464. https://doi.org/10.1016/j.na.2023.113464 doi: 10.1016/j.na.2023.113464 |
[22] | T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 367–397. https://doi.org/10.1016/S0294-1449(16)30232-3 doi: 10.1016/S0294-1449(16)30232-3 |
[23] | Y. Hashimoto, A remark on the analyticity of the solutions for non-linear elliptic partial differential equations, Tokio J. Math., 29 (2006), 271–281. https://doi.org/10.3836/tjm/1170348166 doi: 10.3836/tjm/1170348166 |