Research article Special Issues

On the critical points of solutions of PDE: The case of concentrating solutions on the sphere

  • Received: 23 August 2024 Revised: 25 November 2024 Accepted: 28 November 2024 Published: 04 December 2024
  • 35B09, 35B40, 35Q

  • In this paper, we are concerned with the number of critical points of solutions of nonlinear elliptic equations in a domain $ D $ of the sphere and their index.

    Citation: Francesca Gladiali. On the critical points of solutions of PDE: The case of concentrating solutions on the sphere[J]. Networks and Heterogeneous Media, 2024, 19(3): 1336-1343. doi: 10.3934/nhm.2024057

    Related Papers:

  • In this paper, we are concerned with the number of critical points of solutions of nonlinear elliptic equations in a domain $ D $ of the sphere and their index.



    加载中


    [1] F. Gladiali, M. Grossi, On the number of critical points of solutions of semilinear equations in $\Bbb R^2$, Am. J. Math., 144 (2022), 1221–1240. https://doi.org/10.1353/ajm.2022.0028 doi: 10.1353/ajm.2022.0028
    [2] F. Gladiali, M. Grossi, On the critical points of solutions of pde in non-convex settings: The case of concentrating solutions, J. Funct. Anal., 287 (2024), 110620. https://doi.org/10.1016/j.jfa.2024.110620 doi: 10.1016/j.jfa.2024.110620
    [3] S. Y. A. Chang, M. J. Gursky, P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differ. Equ., 1 (1993), 205–229. https://doi.org/10.1007/BF01191617 doi: 10.1007/BF01191617
    [4] S. Y. A. Chang, P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215–259. https://doi.org/10.1007/BF02392560 doi: 10.1007/BF02392560
    [5] C. C. Chen, C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55 (2002), 728–771. https://doi.org/10.1002/cpa.3014 doi: 10.1002/cpa.3014
    [6] J. L. Kazdan, F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math., 101 (1975), 317–331. https://doi.org/10.2307/1970993 doi: 10.2307/1970993
    [7] E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Commun. Math. Phys., 143 (1992), 501–525. https://doi.org/10.1007/BF02099262 doi: 10.1007/BF02099262
    [8] E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Part Ⅱ, Commun. Math. Phys., 174 (1995), 229–260. https://doi.org/10.1007/BF02099602 doi: 10.1007/BF02099602
    [9] S. Chanillo, M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys., 160 (1994), 217–238. https://doi.org/10.1007/BF02103274 doi: 10.1007/BF02103274
    [10] M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., 46 (1993), 27–56. https://doi.org/10.1002/cpa.3160460103 doi: 10.1002/cpa.3160460103
    [11] L. A. Caffarelli, Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: An existence theorem, Commun. Math. Phys., 168 (1995), 321–336. https://doi.org/10.1007/BF02101552 doi: 10.1007/BF02101552
    [12] W. Ding, J. Jost, J. Li, G. Wang, Existence results for mean field equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 16 (1999), 653–666. https://doi.org/10.1016/S0294-1449(99)80031-6 doi: 10.1016/S0294-1449(99)80031-6
    [13] J. Hong, Y. Kim, P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230–2233. https://doi.org/10.1103/PhysRevLett.64.2230 doi: 10.1103/PhysRevLett.64.2230
    [14] M. Nolasco, G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., 9 (1999), 31–94. https://doi.org/10.1007/s005260050132 doi: 10.1007/s005260050132
    [15] M. Nolasco, G. Tarantello, Vortex condensates for the SU(3) Chern-Simons theory, Commun. Math. Phys., 213 (2000), 599–639. https://doi.org/10.1007/s002200000252 doi: 10.1007/s002200000252
    [16] J. Spruck, Y. S. Yang, Topological solutions in the self-dual Chern-Simons theory: Existence and approximation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 12 (1995), 75–97. https://doi.org/10.1016/S0294-1449(16)30168-8 doi: 10.1016/S0294-1449(16)30168-8
    [17] J. Li, L. Sun, Y. Yang, The boundary value problem for the mean field equation on a compact Riemann surface, Sci. China Math., 66 (2023), 115–142. https://doi.org/10.1007/s11425-021-1962-5 doi: 10.1007/s11425-021-1962-5
    [18] M. Grossi, H. Ohtsuka, T. Suzuki, Asymptotic non-degeneracy of the multiple blow-up solutions to the Gel'fand problem in two space dimensions, Adv. Differ. Equ., 16 (2011), 145–164. https://doi.org/10.57262/ade/1355854333 doi: 10.57262/ade/1355854333
    [19] Y. Y. Li, Harnack type inequality: The method of moving planes, Commun. Math. Phys., 200 (1999), 421–444. https://doi.org/10.1007/s002200050536 doi: 10.1007/s002200050536
    [20] K. Nagasaki, T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal., 3 (1990), 173–188. https://doi.org/10.3233/ASY-1990-3205 doi: 10.3233/ASY-1990-3205
    [21] H. Ohtsuka, T. Sato, Refinement of asymptotic behavior of the eigenvalues for the linearized Liouville-Gel'fand problem, Nonlinear Anal., 240 (2024), 113464. https://doi.org/10.1016/j.na.2023.113464 doi: 10.1016/j.na.2023.113464
    [22] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 367–397. https://doi.org/10.1016/S0294-1449(16)30232-3 doi: 10.1016/S0294-1449(16)30232-3
    [23] Y. Hashimoto, A remark on the analyticity of the solutions for non-linear elliptic partial differential equations, Tokio J. Math., 29 (2006), 271–281. https://doi.org/10.3836/tjm/1170348166 doi: 10.3836/tjm/1170348166
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(250) PDF downloads(11) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog