Citation: Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with costdepending on the free boundary[J]. Networks and Heterogeneous Media, 2012, 7(4): 605-615. doi: 10.3934/nhm.2012.7.605
[1] | F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.2307/1990893 |
[2] | L. Álvarez, On the behavior of the free boundary of some nonhomogeneous elliptic problems, Appl. Anal., 36 (1990), 131-144. doi: 10.1080/00036819008839927 |
[3] | L. Álvarez and J. I. Díaz, On the behaviour near the free boundary of solutions of some non homogeneous elliptic problems, in "Actas del IX CEDYA", Univ. de Valladolid, (1987), 55-59. |
[4] | L. Álvarez and J. I. Díaz, On the retention of the interfaces in some elliptic and parabolic problems, Discrete and Continuous Dynamical Systems, 25 (2009), 1-17. doi: 10.3934/dcds.2009.25.1 |
[5] | R. Aris, "The Mathematical Theory of Diffusion and Reaction in Permeable Catalysis," Clarendon Press, Oxford, 1975. |
[6] | H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368 (1986), 63-107. |
[7] | V. Barbu, "Optimal Control of Variational Inequalities," Pitman Res. Notes Math., 100, 1984. |
[8] | A. Bermúdez, C. Rodríguez, M. E. Vázquez and A. Martínez, Mathematical modelling and optimal control methods in waste water discharges, in "Ocean Circulation and Pollution-A Mathematical and Numerical Investigation" (Ed. J. I. Díaz), Springer, Berlin, (2004), 7-15. |
[9] | T. Bleninger and G. H. Jirka, Modelling and environmentally sound management of brine discharges from desalination plants, Desalination, 221 (2008), 585-597. |
[10] | F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element approximations, RAIRO Anal. Numér., 17 (1983), 385-395. |
[11] | L. A. Caffarelli, Compactness methods in free boundary problems, Comm. Partial Differential Equations, 5 (1980), 427-448. doi: 10.1080/0360530800882144 |
[12] | L. A. Caffarelli, A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets, Boll. Un. Mat. Ital. A (5), 18 (1981), 109-113. |
[13] | X.-Y. Chen, H. Matano and M. Mimura, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption, J. Reine Angew. Math., 459 (1995), 1-36. |
[14] | S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the A-obstacle problem and the Hausdorff measure of its free boundary, Annali di Matematica, 191 (2012), 113-165. doi: 10.1007/s10231-010-0177-7 |
[15] | C. Conca, J. I. Díaz, A. Liñan and C. Timofte, Homogenization in chemical Rreactive flows, Electr. J. Diff. Eqns., 40 (2004), 1-22. |
[16] | J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries," Pitman, 106, London, 1985. |
[17] | J. I. Díaz, Two problems in homogenization of porous media, Extracta Mathematica, 14 (1999), 141-155. |
[18] | J. I. Díaz, T. Mingazzini and A. M. Ramos, On an optimal control problem involving the location of a free boundary, Proceedings of the XII Congreso de Ecuaciones Diferenciales Y Aplicaciones /Congreso de Matematica Aplicada (Palma de Mallorca, Spain, 2011), http://www.uibcongres.org/congresos/ |
[19] | J. I. Díaz and A. M. Ramos, Numerical experiments regarding the distributed control of semilinear parabolic problems, Computers and Mathematics with Applications, 48 (2004), 1575-1586. doi: 10.1016/j.camwa.2004.04.033 |
[20] | J. I. Díaz, J. M. Sánchez, N. Sánchez, M. Veneros and D. Zarzo, Modeling of brine discharges using both a pilot plant and differential equations, To appear in the proceedings of IDA World Congress - Perth Convention and Exhibition Centre (PCEC), Perth, Western Australia, (2011). |
[21] | M. G. Garroni and M. A. Vivaldi, Stability of free boundaries, Nonlinear Analysis, Theory, Methods & Applications, 12 (1998), 1339-1347. doi: 10.1016/0362-546X(88)90082-X |
[22] | H. W. Gómez, I. Colominas, F. L. Navarrina and M. Casteleiro, A hyperbolic model for convection-diffusion transport problems in CFD: numerical analysis and applications, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas (RACSAM), 102 (2008), 319-334. doi: 10.1007/BF03191826 |
[23] | A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques & Applications," Springer, 48, Berlin, 2005 |
[24] | D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications," Academic Press, New York, 1980. |
[25] | A. Niepelt, "Development of Interfaces for the Coupling of Hydrodynamic Models for Brine Discharges from Desalination Plants," Ph.D thesis, Institute for Hydromechanics, Univ. Karlsruhe, 2007. |
[26] | R. H. Nochetto, "Aproximación de Problemas Elípticos de Frontera Libre," Publicaciones del Depto. Ecuaciones Funcionales, Univ. Complutense de Madrid. 1985. |
[27] | R. H. Nochetto, A note on the approximation of free boundaries by finite element methods, RAIRO Modél. Math. Anal., 20 (1986), 355-368. |
[28] | D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem, Comm. Part. Diff. Eq., 8 (1983), 1409-1454. doi: 10.1080/03605308308820309 |
[29] | R. Pinsky, The dead core for reaction-diffusion equations with convection and its connection with the first exit time of the related Markov diffusion process, Nonlinear Anal., 12 (1988), 451-471. doi: 10.1016/0362-546X(88)90043-0 |
[30] | R. Pinsky, The interplay of nonlinear reaction and convection in dead core behavior for reaction-diffusion equations, Nonlinear Anal., 18 (1992), 1113-1123. doi: 10.1016/0362-546X(92)90156-9 |
[31] | J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9 |
[32] | J. M. Rakotoson, "Rearrangement Relatif: un Instrument D'estimations dans les Problemes aux Limites," Mathematiques & Applications, no. 64, Springer, Paris, 2008. doi: 10.1007/978-3-540-69118-1 |
[33] | J. F. Rodrigues, "Obstacle Problems in Mathematical Physics," North-Holland Mathematics Studies, 134. Mathematical Notes, 114. North-Holland Publishing Co., Amsterdam 1987. |
[34] | J. F. Rodrigues and B. Zaltzman, Free boundary optimal control in the multidimensional Stefan problem, in "Free Boundary Problems: Theory and Applications" (Eds. J. I. Díaz, A. Liñán, M. A. Herrero and J. L. Vázquez), Pitman, 323, London (1993), 186-194. |
[35] | D. Tiba, Controllability properties for elliptic systems, International Conference on Differential Equations, 1, 2 (1991), 932-936. |