Loading [MathJax]/jax/output/SVG/jax.js

On boundary optimal control problem for an arterial system: First-order optimality conditions

  • Received: 01 December 2017 Revised: 01 August 2018
  • Primary: 35K51, 35B45; Secondary: 49J20

  • We discuss a control constrained boundary optimal control problem for the Boussinesq-type system arising in the study of the dynamics of an arterial network. We suppose that the control object is described by an initial-boundary value problem for $ 1D $ system of pseudo-parabolic nonlinear equations with an unbounded coefficient in the principle part and the Robin-type of boundary conditions. The main question we study in this part of the paper is about the existence of optimal solutions and first-order optimality conditions.

    Citation: Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions[J]. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027

    Related Papers:

    [1] Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027
    [2] Alberto Bressan, Yunho Hong . Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2(2): 313-331. doi: 10.3934/nhm.2007.2.313
    [3] Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027
    [4] Rong Huang, Zhifeng Weng . A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems. Networks and Heterogeneous Media, 2023, 18(2): 562-580. doi: 10.3934/nhm.2023024
    [5] Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos . Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115. doi: 10.3934/nhm.2024048
    [6] Ling Zhang, Xuewen Tan, Jia Li, Fan Yang . Dynamic analysis and optimal control of leptospirosis based on Caputo fractional derivative. Networks and Heterogeneous Media, 2024, 19(3): 1262-1285. doi: 10.3934/nhm.2024054
    [7] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [8] Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038
    [9] Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014
    [10] Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019
  • We discuss a control constrained boundary optimal control problem for the Boussinesq-type system arising in the study of the dynamics of an arterial network. We suppose that the control object is described by an initial-boundary value problem for $ 1D $ system of pseudo-parabolic nonlinear equations with an unbounded coefficient in the principle part and the Robin-type of boundary conditions. The main question we study in this part of the paper is about the existence of optimal solutions and first-order optimality conditions.



    The main goal of this paper is to study one class of optimal control problems (OCPs) for a viscous Boussinesq system arising in the study of the dynamics of cardiovascular networks. We consider the boundary control problem for a $1D$ system of coupled PDEs with the Robin-type boundary conditions, describing the dynamics of pressure and flow in the arterial segment. We discuss in this part of paper the existence of optimal solutions and provide a substantial analysis of the first-order optimality conditions. Namely, we deal with the following minimization problem:

    $ Minimize    J(g,h,η,u):=12ΩαΩ(u(T)uΩ)2 dx+ν2T0Ω(ηxx)2 dxdt+12T0|ΩαQ(η(t)+r0uxt(t)ηQ) dx|2 dt+12T0(βg|g|2+βh|h|2) dt $ (1)

    subject to the constraints

    $ \left\{ ηt+ηxu+ηux+12r0uxνηxx=0     in  Q,[u(δux)x]t+12(u2)x+μηx=f    in  Q, \right. $ (2)
    $ \left\{ η(0,)=η0    in  Ω,u(0,)(δ()ux(0,))x=u0    in  Ω, \right. $ (3)
    $ \left\{ η(,0)=η(,L)=η      in  (0,T),δ(0)˙ux(,0)+σ0u(,0)=g,  in  (0,T),δ(L)˙ux(,L)+σ1u(,L)=h,      in  (0,T),δ(L)ux(0,L)=δ(0)ux(0,0)=0 \right. $ (4)

    and

    $ \label{2.6} (g,h)\in G_{ad}\times H_{ad}\subset L^2(0,T)\times L^2(0,T). $ (5)

    Here, $\beta_g$, $\beta_h$, and $\eta^\ast$ are positive constants, and $G_{ad}$ and $H_{ad}$ are the sets of admissible boundary controls. These sets and the rest of notations will be specified in the next section.

    Optimal control problem (1)-(5) comes from the fluid dynamic models of blood flows in arterial systems. It is well known that the cardiovascular system consists of a pump that propels a viscous liquid (the blood) through a network of flexible tubes. The heart is one key component in the complex control mechanism of maintaining pressure in the vascular system. The aorta is the main artery originating from the left ventricle and then bifurcates to other arteries, and it is identified by several segments (ascending, thoracic, abdominal). The functionality of the aorta, considered as a single segment, is worth exploring from a modeling perspective, in particular in relationship to the presence of the aortic valve.

    In the first part of our investigation (see [5]) we make use of the standard viscous hyperbolic system (see [2,21]) which models cross-section area $S(x,t)$ and average velocity $u(x,t)$ in the spatial domain:

    $ \frac{\partial S}{\partial t}+\frac{\partial (Su)}{\partial x}-\nu \frac{{{\partial }^{2}}S}{\partial {{x}^{2}}} = 0, $ (6)
    $ \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+\frac{1}{\rho }\frac{\partial P}{\partial x} = f, $ (7)

    where $(t,x)\in Q = (0,L)\times(0,T)$, $f = f(x,t)$ is a friction force, usually taken to be $f = -22\mu \pi u/S $, $\mu$ is the fluid viscosity, $P(x,t)$ is the hydrodynamic pressure, $L$ is the length of an arterial segment, and $T = T_{pulse} = 60/(Hart Rate)$ is the duration of an entire heartbeat. Here we include the inertial effects of the wall motion, described by the wall displacement $\eta = \eta (x,t)$:

    $ \label{3.F2} \eta = r-r_{0} = \frac{1}{\sqrt{\pi} }(\sqrt{S}-\sqrt{S_{0}})\simeq \frac{S-S_{0}}{2\sqrt{\pi S_{0}}}, $ (8)

    where $r(x,t)$ is the radius, $r_{0} = r(x,0),$ $S_{0} = S(x,0)$.

    The fluid structure interaction is modeled using inertial forces, which gives the pressure law

    $ P=Pext+βr20η+ρωh2ηt2. $ (9)

    Here, $P_{ext}$ is the external pressure, $\beta = \frac{E}{1-\sigma ^{2}}h$, $\sigma $ is the Poisson ratio (usually $\sigma^2 = \frac{1}{2}$), $E$ is Young modulus, $h$ is the wall thickness, $m = \frac{\rho_{\omega }h}{2\sqrt{\pi S_{0}}}$, $\rho _{\omega }$ is the density of the wall.

    This leads to the following Boussinesq system:

    $ \label{3.F4} \left\{ ηt+ηxu+ηux+12r0uxνηxx=0,ut+uux+2Ehρr20ηx+ρωhρηxtt=f, \right. $

    where $\rho $ is the blood density. Considering the relation $\eta_{t} = -\frac 12 r_0 u_{x}$ and rearranging terms in $u$ we get the system in the form (2)-(3). It remains to furnish the system by corresponding initial and boundary conditions which we propose to take in the form (3)-(4).

    As for the OCP that is related with the arterial system, we are interested in finding the optimal heart rate (HR) which leads to the minimization of the following cost functional

    $ J=t0+Tpulset0|Pavg(t)Pref|2dt=t0+Tpulset0|1LL0P(x,t)dxPref|2dt. $ (10)

    The systolic period is taken to be consistently one quarter of $T_{pulse}$, and $P_{ref} = 100$ mmHg.

    It is easy to note that relations (8)-(9) lead to the following representation for the cost functional (10)

    $ \label{3.F9} J = \int_{t_0}^{t_0+T_{pulse}} \left| \frac{1}{L}\int_0^L P(x,t)\, dx-P_{ref}\right|^2\, dt\\ = \frac{1}{L^2} \int_{t_0}^{t_0+T_{pulse}} \left| \int_0^L \left(P_{ext}(t)+\frac{2Eh}{r_{0}^{2}}\eta(t,x) + \rho _{\omega }h\,\eta_{tt}(t,x) -L\,P_{ref}\right)\, dx\right|^2\, dt. $ (11)

    Since $\eta_t\approx -\frac{1}{2}r_0 u_x$ (see [3]) and we suppose that $\nu\eta_{xx}$ should be small enough, it easily follows from (11) that the given cost functional (10) can be reduced to the tracking type (1).

    The research in the field of the cardiovascular system is very active (see, for instance the literature describing the dynamics of the vascular network coupled with a heart model, [2,9,10,12,15,16,17,18,19,20,21]). However, there seems to be no studies that focus on both aspects at the same time: a detailed description of the four chambers of the heart and on the spatial dynamics in the aorta. Some numerical aspects of optimizing the dynamics of the pressure and flow in the aorta as well as the heart rate variability, taking into account the elasticity of the aorta together with an aortic valve model at the inflow and a peripheral resistance model at the outflow, based on the discontinuous Galerkin method and a two-step time integration scheme of Adam-Bashfort, were recently treated in [3] for the Boussinesq system like (2). More broadly, theory and applications of optimization and control in spatial networks, basing on the different types of conservation laws have been extensively developed in literature, have been successfully applied to telecommunications, transportation or supply networks ([6,7]).

    From mathematical point of view, the characteristic feature of the Boussinesq system (2) is the fact that it involves a pseudo-parabolic operator with unbounded coefficient in its principle part. In the first part of this paper it was shown that for any pair of boundary controls $g\in G_{ad}$ and $h\in H_{ad}$, and for given $f\in L^\infty(0,T;L^2(\Omega))$, $\mu\in L^\infty(0,T;L^2(\Omega))$, $\sigma_0\in L^\infty(0,T)$, $\sigma_1\in L^\infty(0,T)$, $u_0\in V_\delta$, $\eta_0\in H_0^1(\Omega)$, $r_0\in H^1(\Omega)$, and $\delta\in L^1(\Omega)$, the set of feasible solutions to optimal control problem (1)-(5) is non-empty and the corresponding weak solution $(\eta(t),u(t))$ of the viscous Boussinesq system (2)-(4) possesses the extra regularity properties $\eta_{xx}, u_{xt}\in L^2(0,T;L^2(\Omega))$, which play a crucial role in the proof of solvability of OCP (1)-(5). In this paper we deal with the existence of optimal solutions and derive the corresponding optimality conditions for the problem (1)-(5). It should be mentioned, that application of Lagrange principle requires even higher smoothness of solutions to the initial Boussinesq system (2)-(4). In order to avoid such limitations, we deal with a simplified version of the initial optimal control problem (2)-(4) (see (39), argumentation above and [3,5] for physical description of the considered model). Also, in the second part of the paper, in order to provide the thorough substantiation of the first-order optimality conditions to the considered OCP, we make the special assumption for $\delta$ to be an element of the class $H^1(\Omega)$. Since the coefficient $\delta$ depends on such indicators as wall thickness, density of the wall and blood density, i.e. indicators varying slowly and smoothly, such assumption seems justified.

    Let $T>0$ and $L>0$ be given values. We set $\Omega = (0,L)$, $Q = (0,T)\times\Omega$, and $\Sigma = (0,T)\times \partial\Omega$. Let $\delta\in H^1(\Omega)$ be a given function such that $\delta(x)\ge \delta_0>0$ for a.e. $x\in \Omega$. We use the standard notion $L^2(\Omega,\delta\,dx)$ for the set of measurable functions $u$ on $\Omega$ such that

    $ \|u{{\|}_{{{L}^{2}}(\Omega ,\delta\ dx)}} = {{\left( \int_{\Omega }{{{u}^{2}}}\delta\ dx \right)}^{1/2}} < +\infty . $

    We set $H = L^2(\Omega)$, $V_0 = H^1_0(\Omega)$, $V = H^1(\Omega)$, and identify the Hilbert space $H$ with its dual $H^\ast$. On $H$ we use the common natural inner product $(\cdot,\cdot)_H$, and endow the Hilbert spaces $V_0$ and $V$ with the inner products

    $ (\varphi,\psi)_{V_0} = \left(\varphi^\prime,\psi^\prime\right)_H\ \forall\,\varphi, \psi\in V_0 $

    and

    $ (\varphi,\psi)_{V} = (\varphi,\psi)_H+\left(\varphi^\prime,\psi^\prime\right)_H\ \forall\, \varphi, \psi\in V, $

    respectively.

    We also make use of the weighted Sobolev space $V_\delta$ as the set of functions $u\in V$ for which the norm

    $ \|u\|_{V_\delta} = \left(\int_\Omega \left(u^2+\delta(u^\prime)^2\right)\,dx\right)^{1/2} $

    is finite. Note that due to the following estimate, $V_\delta$ is complete with respect to the norm $\|\cdot\|_{V,\delta}$:

    $ u2V:=Ω(u2+(u)2)dxmax{1,δ10}Ω(u2+δ(u)2)dx=max{1,δ10}u2Vδ. $ (12)

    Recall that $V_0$, $V$, and, hence, $V_\delta$ are continuously embedded into $C(\overline{\Omega})$, see [1,14] for instance. Since $\delta,\delta^{-1}\in L^1(\Omega)$, it follows that $V_\delta$ is a uniformly convex separable Banach space [14]. Moreover, in view of the estimate (12), the embedding $V_\delta\hookrightarrow H$ is continuous and dense. Hence, $H = H^\ast$ is densely and continuously embedded in $V^\ast_\delta$, and, therefore, $V_\delta\hookrightarrow H\hookrightarrow V^\ast_\delta$ is a Hilbert triplet (see [11] for the details).

    Let us recall some well-known inequalities, that will be useful in the sequel (see [5]).

    $\|u\|_{L^\infty(\Omega)}\le \sqrt{2\max\left\{L,L^{-1}\right\}} \|u\|_{V}$, $\forall\, u\in V$ and $\|u\|_{L^\infty(\Omega)}\le 2\sqrt{L}\,\|u\|_{V_0}$, $\forall\, u\in V_0$.

    ● (Friedrich's Inequality) For any $u\in V_0$, we have

    $ \label{4.F} \|u\|_H\le L\|u_x\|_H = L\|u\|_{V_0}. $ (13)

    By $L^2(0,T;V_0)$ we denote the space of measurable abstract functions (equivalence classes) $u:[0,T]\rightarrow V$ such that

    $ \|u\|_{L^2(0,T;V_0)}: = \left(\int_0^T \|u(t)\|^2_{V_0}\,dt \right)^{1/2} < +\infty. $

    By analogy we can define the spaces $L^2(0,T;V_\delta)$, $L^\infty(0,T;H)$, $L^\infty(0,T;V_\delta)$, and $C([0,T];H)$ (for the details, we refer to [8]). In what follows, when $t$ is fixed, the expression $u(t)$ stands for the function $u(t,\cdot)$ considered as a function in $\Omega$ with values into a suitable functional space. When we adopt this convention, we write $u(t)$ instead of $u(t,x)$ and $\dot{u}$ instead of $u_t$ for the weak derivative of $u$ in the sense of distribution

    $ \int_0^T\varphi(t)\left < \dot{u}(t),v\right > _{V^\ast;V}\,dt = -\int_0^T\dot{\varphi}(t)\left < u(t),v\right > _{V^\ast;V}\,dt,\ \ \ \ \forall\,v\in V, $

    where $\left<\cdot,\cdot\right>_{V^\ast;V}$ denotes the pairing between $V^\ast$ and $V$.

    We also make use of the following Hilbert spaces

    $ W0(0,T)={uL2(0,T;V0): ˙uL2(0,T;V0)},Wδ(0,T)={uL2(0,T;Vδ): ˙uL2(0,T;Vδ)}, $

    supplied with their common inner product, see [8,p. 473], for instance.

    Remark 1. The following result is fundamental (see [8]): Let $(V,H,V^\ast)$ be a Hilbert triplet, $V\hookrightarrow H\hookrightarrow V^\ast$, with $V$ separable, and let $u\in L^2(0,T;V)$ and $\dot{u}\in L^2(0,T;V^\ast)$. Then

    (ⅰ) $u\in C([0,T];H)$ and $\exists\,C_E>0$ such that

    $ \max\limits_{1\le t\le T} \|u(t)\|_H\le C_E\left(\|u\|_{L^2(0,T;V)}+\|\dot{u}\|_{L^2(0,T;V^\ast)}\right); $

    (ⅱ) if $v\in L^2(0,T;V)$ and $\dot{v}\in L^2(0,T;V^\ast)$, then the following integration by parts formula holds:

    $ \label{1.3} \int_s^t\left(\left < \dot{u}(\gamma),v(\gamma)\right > _{V^\ast;V}+\left < u(\gamma),\dot{v}(\gamma)\right > _{V^\ast;V}\right)\,d\gamma = \left(u(t),v(t)\right)_H-\left(u(s),v(s)\right)_H $ (14)

    for all $s,t\in[0,T]$.

    The similar assertions are valid for the Hilbert triplet $V_\delta\hookrightarrow H\hookrightarrow V^\ast_\delta$.

    Let $\nu>0$ be a viscosity parameter, and let

    $ f\in {{L}^{\infty }}(0,T;H),\ \ \mu \in {{L}^{\infty }}(0,T;V),\ \ {{\sigma }_{0}}\in {{L}^{\infty }}(0,T),\ \ {{\sigma }_{1}}\in {{L}^{\infty }}(0,T), $ (15)
    $ {{\alpha }_{\Omega }}\in {{L}^{\infty }}(\Omega ),\ \ {{\alpha }_{Q}}\in {{L}^{\infty }}(Q),\ \ {{u}_{\Omega }}\in {{L}^{2}}(\Omega ),\ \ {{\eta }_{Q}}\in {{L}^{2}}(0,T;H), $ (16)
    $ {{u}_{0}}\in {{V}_{\delta }},\ \ {{\eta }_{0}}\in H_{0}^{1}(\Omega ),\ \ {{r}_{0}}\in {{H}^{1}}(\Omega ), $ (17)

    be given distributions. In particular, $f$ stands for a fixed forcing term, $u_\Omega$ and $\eta_Q$ are given desired states for the wall displacement and average velocity, respectively, $\alpha_\Omega$ and $\alpha_Q$ are non-negative weights (without loss of generality we suppose that $\alpha_Q$ is a nonnegative constant function on $[0,T]\times[0,L]$), $u_0$ and $\eta_0$ are given initial states, and $\delta$ is a singular (possibly locally unbounded) weight function such that $\delta(x)\ge \delta_0>0$ for a.e. $x\in \Omega$.

    We assume that the sets of admissible boundary controls $G_{ad}$ and $H_{ad}$ are given as follows

    $ Gad={gL2(0,T):  g0gg1  a.e.  in (0,T)},Had={hL2(0,T):  h0hh1  a.e. in (0,T)}, $ (18)

    where $g_0,h_0,g_1,h_1\in L^\infty(0,T)$ with $g_0(t)\le g_1(t)$ and $h_0(t)\le h_1(t)$ almost everywhere in $(0,T)$.

    The optimal control problem we consider in this paper is to minimize the discrepancy between the given distributions $(u_\Omega,\eta_Q)\in L^2(\Omega)\times L^2(Q)$ and the pair of distributions $\left(u(T),\eta(t)+\eta_{tt}(t)\right)$ (see, for instance, [5] for the physical interpretation), where $(\eta(t),u(t))$ is the solution of a viscous Boussinesq system, by an appropriate choice of boundary controls $g\in G_{ad}$ and $h\in H_{ad}$. Namely, we deal with the minimization problem (1)-(5).

    Definition 3.1. We say that, for given boundary controls $g\in G_{ad}$ and $h\in H_{ad}$, a couple of functions $(\eta(t),u(t))$ is a weak solution to the initial-boundary value problem (2)-(4) if

    $ \eta (t) = w(t)+{{\eta }^{*}},\ \ \ \ w(\cdot )\in {{W}_{0}}(0,T),\ \ \ \ u(\cdot )\in {{W}_{\delta }}(0,T), $ (19)
    $ \delta (L){{u}_{x}}(0,L) = 0,\ \ \ \ \ \ \ \ \delta (0){{u}_{x}}(0,0) = 0, $ (20)
    $ {{\left( w(0),\chi \right)}_{H}} = {{\left( {{\eta }_{0}}-{{\eta }^{*}},\chi \right)}_{H}}\ \ \ \ \ \ \ \text{for all }\chi \in H, $ (21)
    $ {{\left( u(0)-{{(\delta {{u}_{x}}(0))}_{x}},\chi \right)}_{{{V}_{\delta }}}} = {{\left( {{u}_{0}},\chi \right)}_{{{V}_{\delta }}}}\ \ \ \ \ \ \ \text{for all }\chi \in {{V}_{\delta }}, $ (22)

    and the following relations

    $ ˙w(t),φV0;V0+((w(t)u(t))x,φ)H+ν(wx(t),φx)H                 +12(r0ux(t)+2ηux(t),φ)H=0, $ (23)
    $ ˙u(t),ψVδ;Vδ+Ωδ˙ux(t)ψxdx+(u(t)ux(t),ψ)H+(μ(t)wx(t),ψ)H                +σ1(t)u(t,L)ψ(L)σ0(t)u(t,0)ψ(0)                =(f(t),ψ)H+h(t)ψ(L)g(t)ψ(0) $ (24)

    hold true for all $\varphi\in V_0$ and $\psi\in V_\delta$ and a.e. $t\in[0,T]$.

    Remark 2. Let us mention that if we multiply the left- and right-hand sides of equations (23)-(24) by function $\chi\in L^2(0,T)$ and integrate the result over the interval $(0,T)$, all integrals are finite. Moreover, closely following the arguments of Korpusov and Sveshnikov (see [13]), it can be shown that the weak solution to (2)-(4) in the sense of Definition 3.1 is equivalent to the following one: $(\eta(t),u(t))$ is a weak solution to the initial-boundary value problem (2)-(4) if the conditions (19)-(22) hold true and

    $ \int_{0}^{T}{{{\left\langle {{A}_{1}}(w(t),u(t)),\varphi (t) \right\rangle }_{V_{0}^{*};{{V}_{0}}}}dt = 0,\ \ \ \ \ \ \forall \varphi (\cdot )\in {{L}^{2}}(0,T;{{V}_{0}}),} $ (25)
    $ \int_{0}^{T}{{{\left\langle {{A}_{2}}(w(t),u(t)),\psi (t) \right\rangle }_{V_{\delta }^{*};{{V}_{\delta }}}}dt = 0,\ \ \ \ \ \ \forall \psi (\cdot )\in {{L}^{2}}(0,T;{{V}_{\delta }}),} $ (26)

    where

    $ {{A}_{1}}(w,u) = \frac{\partial w}{\partial t}-\nu {{w}_{xx}}+{{w}_{x}}u+w{{u}_{x}}+\frac{1}{2}{{r}_{0}}{{u}_{x}}+{{\eta }^{*}}{{u}_{x}}\in V_{0}^{*}, $ (27)
    $ {{A}_{2}}(w,u) = \left[ t(u(δux)x)+12(u2)x+μwxfδ(0)˙ux(,0)+σ0u(,0)gδ(L)˙ux(,L)+σ1u(,L)h \right]\in V_{\delta }^{*}. $ (28)

    Lemma 3.2 ([5]). Assume that the conditions (15)-(17) hold true. Let $g\in G_{ad}$ and $h\in H_{ad}$ be an arbitrary pair of admissible boundary controls. Then there exists a unique solution $(\eta(\cdot),u(\cdot))$ of the system (2)-(4) in the sense of Definition 3.1 such that

    $ (η(),u())(W0(0,T)+η)×Wδ(0,T),wL(0,T;H)L2(0,T;H2(Ω)V0),˙wL2(0,T;H), uW1,(0,T;Vδ) $ (29)

    and there exists a constant $D_\ast>0$ depending only on initial data (15), (17) and control constrains $h_1, g_1$, satisfying the estimates

    $ \|w\|_{{{L}^{2}}(0,T;{{H}^{2}}(\Omega ))}^{2}+\|w\|_{{{L}^{\infty }}(0,T;H)}^{2}+\|\dot{w}\|_{{{L}^{2}}(0,T;H)}^{2}\le {{D}_{*}}, $ (30)
    $ \|u\|_{{{L}^{\infty }}(0,T;{{V}_{\delta }})}^{2}+\|\dot{u}\|_{{{L}^{\infty }}(0,T;{{V}_{\delta }})}^{2}\le {{D}_{*}}. $ (31)

    We also define the feasible set to the problem (1)-(5), (18) as follows:

    $ \Xi = \left\{ (g,h,\eta ,u)\ \left| gGad,     hHad,η(t)=w(t)+η,     wW0(0,T),     uWδ(0,T),(w(t),u(t)) satisfies relations (19)-(24)for  all φV0,  ψVδ,      and      a.e.  t[0,T],J(g,h,η,u)<+. \right. \right\} $ (32)

    We say that a tuple $\left(g^0,h^0,\eta^0,u^0\right)\in \Xi$ is an optimal solution to the problem (1)-(5), (18) if

    $ J\left(g^0,h^0,\eta^0,u^0\right) = \inf\limits_{(g,h,\eta,u)\in\Xi}J(g,h,\eta,u). $

    In [5] it was shown that $\Xi\ne \emptyset$ and $ \Xi_\lambda = \left\{(g,h,\eta,u)\in\Xi:J(g,h,\eta,u)\le\lambda\right\} $ is a bounded set in $L^2(0,T)\times L^2(0,T)\times\left(W_0(0,T)+\eta^\ast\right)\times W_\delta(0,T)$ for every $\lambda>0$.

    While proving these hypotheses, the authors in [5] obtained a series of useful estimates for the weak solutions to initial-boundary value problem (2)-(4).

    Lemma 3.3. [5,Lemmas 6.3 and 6.5 along with Remark 6.5] Let $g\in G_{ad}$ and $h\in H_{ad}$ be an arbitrary pair of admissible boundary controls. Let $(\eta(\cdot),u(\cdot)) = (w(\cdot)+\eta^\ast,u(\cdot))$ be the corresponding weak solution to the system (2)-(4) in the sense of Definition 3.1. Under assumptions (15)-(17), there exist positive constants $C_1$, $C_2$, $C_3$ depending on the initial data only such that for a.a. $t\in [0,T]$

    $ \label{5.8} \|w(t)\|_H^2+\|u(t)\|^2_{V_\delta}\le C_1,\ \ \ \|\dot{w}(t)\|_{V_0^\ast}\le C_2,\ \ \ \|\dot{u}(t)\|_{V_\delta}\le C_3. $ (33)

    In the context of solvability of OCP (18)-(5), the regularity of the solutions of the corresponding initial-boundary value problem (2)-(4) plays a crucial role.

    Theorem 3.4 ([5]). The set of feasible solutions $\Xi$ to the problem (1)-(5), (18) is nonempty provided the initial data satisfy the conditions (15)-(17).

    Now we proceed with the result concerning existence of optimal solutions to OCP (1)-(5), (18).

    Theorem 3.5. For each

    $ fL(0,T;L2(Ω)),  μL(0,T;V),  σ0L(0,T),  σ1L(0,T),αΩL(Ω),  αQR+,  uΩL2(Ω),  ηQW(0,T;H),u0Vδ,  η0V0, r0H1(Ω),  δL1(Ω) $

    the optimal control problem (1)-(5), (18) admits at least one solution $(g^0,h^0,\eta^0,u^0)$.

    Proof. We apply for the proof the direct method of the calculus of variations. Let us take $\lambda \in\mathbb{R}_+$ large enough, such that

    $ {{\Xi }_{\lambda }} = \left\{ (g,h,\eta ,u)\in \Xi \ \ :\ \ J(g,h,\eta ,u)\le \lambda \right\}\ne \varnothing . $

    Since the cost functional (1) is bounded below on $\Xi$, this implies the existence of a minimizing sequence $\{(g_n,h_n,\eta_n,u_n)\}_{n\ge \mathbb{N}}\subset \Xi_\lambda$, where $\eta_n = w_n+\eta^\ast$. In [5], the authors have proved that this sequence is bounded in $L^2(0,T)\times L^2(0,T)\times \left(W_0(0,T)+\eta^\ast\right)\times W_\delta(0,T)$. Moreover, using (30)-(31), we get

    $ ηxx2L2(0,T;L2(Ω))=wxx2L2(0,T;L2(Ω))w2L2(0,T;H2(Ω))D,uxt2L2(0,T;H)max{1,δ10}˙u2L(0,T;Vδ)D. $

    Therefore, within a subsequence, still denoted by the same index, we can suppose that

    $ gng0  in  L2(0,T),  hnh0  in  L2(0,T),unu0  strongly  in  L2(0,T;H),unu0 weakly-  in  L(0,T;Vδ),˙unv  weakly  in  L2(0,T;Vδ)     and      weakly-  in  L(0,T;Vδ), $

    where $v = \dot{u}^0$ in the sense of distributions $\mathcal{D}^\prime(0,T;V_\delta)$. Also, by Lemma 3.3 (see relation (33)), we get

    $ \|{{u}_{n}}(t)\|_{{{V}_{\delta }}}^{2}\le {{C}_{1}}\ \ \ \ \text{for}\ \text{all}\ n\in \mathbb{N}\ \ \text{and}\ \ \text{for}\ \ \text{all}\ \ t\in [0,T], $

    whence, passing to a subsequence, if necessary, we obtain

    $ un(T,)u0(T,) in  Vδ,un(T,)u0(T,)  strongly  in H $

    due to the continuity of embedding $V_\delta\hookrightarrow V$ and the compactness of embedding $V\hookrightarrow H$. In view of this, lower semicontinuity of norms in $L^2(0,T)$, $L^2(\Omega)$ with respect to the weak convergence and the fact that

    $ ηn(t,x)η0(t,x) in V0, ˙u(t,x)˙u0(t,x) in  Vδ for a.e. t[0,T],(ηn(t,x)+r0(x)un xt(t,x)ηQ)(η0(t,x)+r0(x)u0xt(t,x)-ηQ)) in L1(Ω)for a.e. t[0,T],ΩaQ(ηn(t,x)+r0(x)un xt(t,x)ηQ)dxΩaQ(η0(t,x)+r0(x)un xt(t,x)ηQ))dx for a.e. t[0,T],limnT0(ΩaQ(ηn(t,x)+r0(x)un xt(t,x)ηQ)dx)2 dt = T0(ΩaQ(η0(t,x)+r0(x)un xt(t,x)ηQ)))2 dt, $

    we have $J(g^0,h^0,\eta^0,u^0)\le\inf_{n\in\mathbb{N}}J(g_n,h_n,\eta_n,u_n)$.

    This section aims to prove a range of auxiliary results that will be used in the sequel. Throughout this section the tuple $ (g^0,h^0,\eta^0,u^0) $, where $ \eta^0 = w^0+\eta^\ast $ denotes an optimal solution to initial OCP problem (1)-(5).

    The following proposition aims to prove rather technical result, however it is useful for substantiation of the first-order optimality conditions to the initial OCP (1)-(5).

    Proposition 1. Let $ \delta\in H^1(\Omega) $. Then, for the initial data (15)-(17), the following inclusions take place

    $ u0[u0xxη0+2u0xη0x+η0xxu0](αQ)2Ω(η0ηQ)dxL2(0,T;V),η0[u0xxη0+2u0xη0x+η0xxu0]L2(0,T;V). $

    Proof. To begin with, let us prove that

    $\eta^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]\in L^2(0,T;V^\ast).$

    Obviously, in order to show that

    $ u^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]- (\alpha_Q)^2\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\in L^2(0,T;V^\ast) $

    it would be enough to apply the similar arguments. Since $\eta^0\in W(0,T;V)\hookrightarrow C(Q)$, it is enough to show that there exists $\widetilde{C}$ such that

    $ \left\|u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\right\|_{V^\ast}\le \widetilde{C}\text{ for a.a. }t\in[0,T]. $

    It should be noticed that as far as

    $ u_{x}^{0}\in {{L}^{2}}(\Omega ;\delta \ dx) \hookrightarrow {{L}^{2}}(\Omega )\ \ \ \ \text{for}\ \text{a}.\text{a}.\ t\in [0;T], $

    then $u^0_{xx}\in (H^1(\Omega))^\ast = V^\ast$.

    Also the fact that $\eta^0\in H^2(\Omega)$ gives $\eta^0_{xx}\in L^2(\Omega)$ and $\eta^0_x\in H^1(\Omega)\hookrightarrow C(\overline{\Omega})$ for a.a. $t\in[0;T]$. Therefore, we have

    $u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t)V=supvV1u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t),vV;V=Ωu0xx(t)η0(t)vdx+2Ωu0x(t)η0x(t)vdx+Ωη0xx(t)u0(t)vdxη0(t)C(¯Ω)vVu0xx(t)V+η0x(t)L(Ω)u0x(t)HvH+u0C(¯Ω)ηxx(t)HvHvV×(η0(t)C(¯Ω)u0xxV+η0x(t)L(Ω)u0x(t)L2(Ω)+u0C(¯Ω)ηxx(t)L2(Ω))C(t).$

    It is clear that if only $\eta^0\in \left(W_0(0,T)+\eta^\ast\right)\cap L^2(0,T;H^2(\Omega)\cap V)$, then we have $\eta^0\in C(0,T;V)$, $\eta^0\in C(\overline{\Omega})$, and $\eta^0_x\in L^2(0,T;V)$. Moreover, from $(\delta u_x^0)_x = \delta_xu^0_x+\delta u^0_{xx}$ we can deduce that

    $ \|u^0_{xx}\|_{V^\ast} = \left\|\frac{1}{\delta}\left((\delta u_x^0)_x-\delta_x u^0_x\right)\right\|_{V^\ast} \le \frac{1}{\delta_0}\left(\|(\delta u_x^0)_x\|_{V^\ast}+\|\delta_x u^0_x\|_{V^\ast}\right) $ (34)

    and

    $ C(t)2L2(0;T)2δ20η02C(0,T;H)T0((δu0x)x2V+δxu0x2V)dt+2max{L,L1}δ0T0η0x2Vu02Vδdt+u02C(0,T;H)T0η0xx2Hdt2δ20η02C(0,T;H)T0((δu0x)x2V+δxu0x2V)dt+2max{L,L1}δ0u02W1,(0,T;Vδ)η02L2(0,T;H2)+u02C(0,T;H)η02L2(0,T;H2). $ (35)

    Let us show that the integrals $ \int_0^T\|\delta_x u^0_x\|^2_{V^\ast}\,dt$ and $\int_0^T \|(\delta u_x^0)_x\|^2_{V^\ast}\,dt$ are finite. We take into account the continuous embedding $V\hookrightarrow C(\overline{\Omega})$. Then $\exists\, c(E)$ such that $\|v\|_{C(\overline{\Omega})}\le c(E)\|v\|_{V}$, for all $v\in V$. As for the first integral, we have

    $T0δxu0x(t)2Vdt=T0(supvV1Ω|δx||u0x(t)||v|dx)2dtT0(supvV1vC(¯Ω)δVu(t)V)2dtc2(E)δ0v2Vδ2Vu2L2(0,T;Vδ)c2(E)Tδ0δ2Vu2L(0,T;Vδ).$

    Now, to estimate the second integral, we make use of the equation (2)$_2$ and the well known inequality $(a+b+c)^2\le 3(a^2+b^2+c^2)$.

    $T0(δu0x)x2Vdt=T0(supvV1Ω|(δu0x)xv|dx)2dt=T0(supvV1Ω|[t0(f(s)u0(s)u0x(s)μ(s)η0x(s))ds+u0(t)+u0+(δ(u0)x)x]v|dx)2dtT02(supvV1Ω|t0(f(s)vu0(s)u0x(s)vμ(s)η0x(s)v)ds|dx)2dt+T02(supvV1Ω|(u0(t)+u0+(δ(u0)x)x)v|dx)2dtT02(supvV1ΩT0|f(s)vu0(s)u0x(s)vμ(s)η0x(s)v)|dsdx)2dt+T02(supvV1[u0(t)VvV+u0VvV+(δ(u0)x)xVvV])2dtT02(supvV1T0Ω[|f(s)v|+|u0(s)u0x(s)v|+|μ(s)η0x(s)v|]dxds)2dt+T06([u0(t)2V+u02V+(δ(u0)x)x2V])2dtT02(supvV1T0(f(t)HvV+u0(t)C(¯Ω)u0(t)VvV+μ(t)Hη0(t)VvC(¯Ω))ds)2dt+6Tδ0u02L(0,T;Vδ)+6Tu02V+6T(δ(u0)x)x2V6T[Tf2L2(0,T;H)+(c(E))2max{1,δ10}Tu04L(0,T;Vδ)+(c(E))2μ2L2(0,T;H)η02L2(0,T;V)]+6Tδ0u02L(0,T;Vδ)+6Tu02V+6T(δ(u0)x)x2V<+.$

    It is worth to mention here that, in fact, $(\delta (u_0)_x)_x\in (H^1(\Omega))^\ast$ because the element $\delta (u_0)_x$ belongs to $L^2(\Omega)$. Indeed,

    $ \int_\Omega (\delta (u_0)_x)^2\,dx\le \|\delta\|_{C(\overline{\Omega})}\int_\Omega \delta((u_0)_x)^2\,dx\le c(E)\|\delta\|_V\|u_0\|_{V_\delta}. $

    It remains to note that the property $\int_0^T\left(\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\right)^2 \,dt<\infty$ can be rewritten as follows $\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\in L^2(0,T)$.

    Let us consider two operators $\gamma_1$ and $\gamma_2$ that define the restriction of the functions from $V = H^1(\Omega)$ to the boundary $\partial\Omega = \left\{x = L,x = 0\right\}$, respectively (i.e. $\gamma_1[u(t,\cdot)] = u(t,L)$ and $\gamma_2[u(t,\cdot)] = u(t,0)$). Also we put into consideration two operators

    $ A, B:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2, $

    defined on the set of vector functions ${\bf{p}} = (p,q)^t\in L^2(0,T;V_0)\times L^2(0,T;V_\delta)$ by the rule

    $ (A{\bf{p}})(t): = A(t){\bf{p}}(t) = \left( p(t)q(t)(δqx(t))xγ1[δqx(t)]γ2[δqx(t)] \right), $ (36)
    $ (B{\bf{p}})(t): = B(t){\bf{p}}(t) = \left( u0px(t)+νpxx(t)+(μq)x(t)(η0+12r0)px(t)+12(r0)xp(t)+u0qx(t)(σ1(t)+γ1[u0])γ1[q(t)](σ0(t)+γ2[u0])γ2[q(t)] \right). $ (37)

    Here, we use the fact that $V_\delta^\ast = V_0^\ast\oplus H^{-1/2}(\partial\Omega)$, which in one-dimensional case obviously turns to $V^\ast = V_0^\ast\oplus \mathbb{R}\oplus \mathbb{R}$ and, hence, $L^2(0,T;V_\delta^\ast) = L^2(0,T;V_0)\oplus L^2(0,T)\oplus L^2(0,T)$. Then the following result holds true.

    Lemma 4.1. The operator $A(t):V_0\times V_\delta\to \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}$, defined by (36), satisfies the following conditions:

    $A(t)$ is radially continuous, i.e. for any fixed ${\bf{v}}_1,\,{\bf{v}}_2\in V_0\times V_\delta: = \widetilde{V}$ and almost each $t\in(0,T)$ the real-valued function $ s\rightarrow \langle A(t)({\bf{v}}_1+s {\bf{v}}_2),{\bf{v}}_2\rangle_{\widetilde{V}^\ast;\widetilde{V}} $ is continuous in $[0,1]$;

    for some constant $C$ and some function $g\in L^2(0,T)$

    $\|A(t){\bf{v}}\|_{\widetilde{V}^\ast}\le C\|{\bf{v}}\|_{\widetilde{V}}+g(t),\ \ \ for \ a.e.\ \ \ t\in[0,T],\ \forall\,{\bf{v}}\in \widetilde{V};$

    it is strictly monotone uniformly with respect to $t\in [0,T]$ in the following sense: there exists a constant $m>0$, independent of $t$, such that

    $ A(t)v1A(t)v2,v1v2˜V;˜Vv11v122H+mv21v222Vδ,v1,v2˜V and for a.e. t[0,T]. $

    Moreover, the operator $B:L^2(0,T;V_0)\times L^2(0,t;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times L^2(0,T)\times L^2(0,T)$ possesses the Lipschitz property, i.e. there exists a constant $L>0$ such that

    $ \|B{\bf{v}}_1-B{\bf{v}}_2\|_{L^2(0,T;\widetilde{V}^\ast)}\le L\|{\bf{v}}_1-{\bf{v}}_2\|_{L^2(0,T;\widetilde{V})}, \ for \ all\ {\bf{v}}_1,\,{\bf{v}}_2\in L^2(0,T;\widetilde{V}). $

    Proof. Since the radial continuity of operator $A$ is obvious, we begin with the proof of the second property. Let ${\bf{v}} = (v,w),\,{\bf{z}} = (z,y)\in \widetilde{V}$ be arbitrary elements. Then

    $A(t)v˜V=supz˜V1|A(t)v,z˜V;˜V|=supzV0+yVδ1|Ω(vz+wy)dxΩ(δwx)xydx+δ(L)wx(L)y(L)δ(0)wx(0)y(0)|=supz˜V1|Ω(vz+wy)dx+Ωδwxyxdx|supz˜V1(vHzH+wHyH+wVδyVδ)2(vV0+yVδ)=2v˜V.$

    As for the monotonicity property, for every ${\bf{p}}_1,{\bf{p}}_2\in V_0\times V_\delta$, we have

    $A(t)p1A(t)p2,p1p2˜V;˜V=Ω(p1p2)2dx+Ω(q1q2)2dxΩ[(δ(q1)x)x(δ(q2)x)x](q1q2)dx+[δ(L)(q1(,L))xδ(L)(q2(,L))x](q1(,L)q2(,L))[δ(0)(q1(,0))xδ(0)(q2(,0))x](q1(,0)q2(,0))=p1p2H+q1q2H+q1q22L2(Ω,δdx).$

    It remains to show the Lipschitz continuity of operator $B(t)$. With that in mind we consider three vector-valued functions ${\bf{v}} = (v_1,v_2)^t$, ${\bf{w}} = (w_1,w_2)^t$ and ${\bf{z}} = (z_1,z_2)^t$. Then

    $BvBwL2(0,T;˜V)=supz˜V1|BvBw,z˜V;˜V|=T0[|(u0(t)(v1x(t)w1x(t)),z1(t))H|+ν|(v1x(t)w1x(t),z1x(t))H|+|(μx(v2(t)w2(t)),z1(t))H|+|(μ(v2x(t)w2x(t)),z1(t))H|+12|((r0+2η0)(v1x(t)w1x(t)),z2(t))H|+12|((r0)x(v1(t)w1(t)),z2(t))H|+|(u0(t)(v2x(t)w2x(t)),z2(t))H|+|(σ1(t)+u0(t,L))(v2(t,L)w2(t,L))z2(t,L)|+|(σ0(t)+u0(t,0))(v2(t,0)w2(t,0))z2(t,0)|]dtu0C(Q)v1w1L2(0,T;V0)z1L2(0,T;V0)+νv1w1L2(0,T;V0)z1L2(0,T;V0)+T0(2zC(¯Ω)δ1/20μVv2w2Vδ+12(r0+2η0H+r0V)v1w1Vz2C(¯Ω))dt+u0C(Q)δ10v2w2Vδz2Vδ+T0(|σ1(t)|+|σ0(t)|+2u0(t)C(¯Ω))v2(t)w2(t)C(¯Ω)dt.$

    Taking into account the continuous embedding $V_\delta,V_0\hookrightarrow C(\overline{\Omega})$ and the corresponding inequality

    $ \|v\|_{C(\overline{\Omega})}\le c(E)\|v\|_V\le c(E)\delta_0^{-1/2}\|v\|_{V_\delta}, $

    we finally have

    $ \|B{\bf{v}}-B{\bf{w}}{{\|}_{{{L}^{2}}(0,T;{{\widetilde{V}}^{*}})}}\le L\|{\bf{v}}-{\bf{w}}{{\|}_{{{L}^{2}}(0,T;\widetilde{V})}}, $

    where $L = \max\{C_1;C_2\}$ and

    $C1=u0C(Q)+ν+c(E)(r0V+η0C(0,T;H)),C2=2c(E)δ10μL(0,T;V)+u0C(Q)δ10+c(E)(σ1L2(0,T)+σ2L2(0,T)+2u0C(Q)).$

    This concludes the proof.

    Lemma 4.2. Operator

    $A:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2,$

    which is defined by (36), is radially continuous, strictly monotone and there exists an inverse Lipschitz-continuous operator

    $ A^{-1}:\left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\to L^2(0,T;V_0)\times L^2(0,T;V_\delta) $

    such that

    $ (A1f)(t)=A1(t)f(t)  for a.e.  t[0,T]and for all f[L2(0,T;V0)]2×[L2(0,T)]2, $

    where $A^{-1}(t): \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}\to V_0\times V_\delta$ is an inverse operator to

    $A(t):V_0\times V_\delta\to \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}.$

    Proof. It is easy to see that the action of operator $A(t)$ on element ${\bf{p}} = (p,q)^t$ can be also given by the rule:

    $A(t)p(t)=(A1(t)p(t)A2(t)q(t)),A1:L2(0,T;V0)L2(0,T;V0),A2:L2(0,T;Vδ)L2(0,T;V0)×L2(0,T)×L2(0,T),$

    where

    $ A_1(t)p(t) = p(t) \text{ and }A_2(t) q(t) = \left(q(t)(δqx(t))xγ1[δqx(t)]γ2[δqx(t)]\right).$

    It is easy to see, that $A_1(t)$ is the identity operator. Therefore, $A_1^{-1}(t)\equiv A_1(t)$. As for the operator $A_2(t)$, it is strongly monotone for all $t\in [0,T]$ because

    $\langle (A_2 q_1)(t)-(A_2q_2)(t),q_1(t)-q_2(t)\rangle_{V_\delta^\ast;V_\delta} = \|q_1-q_2\|_{V_\delta}.$

    Moreover, $A_2(t)$ satisfies all preconditions of [11,Lemma 2.2] that establishes the existence of a Lipschitz continuous inverse operator

    $A_2^{-1}:L^2(0,T;V_0^\ast)\times L^2(0,T)\times L^2(0,T)\to L^2(0,T;V_\delta)$

    such that

    $ (A_2^{-1}f)(t) = A_2^{-1}(t)f(t)\ \text{for a.e. }\ t\in [0,T]\ \text{ and }\ \forall\,f\in \left[L^2(0,T;V_0^\ast)\right]\times \left[L^2(0,T)\right]^2, $

    where $A_2^{-1}(t): \left[V_0^\ast\right]\times\mathbb{R}\times\mathbb{R}\to V_\delta$ is an inverse operator to $A_2(t): V_\delta\to V_0^\ast\times\mathbb{R}\times\mathbb{R}$. The proof is complete.

    Before proceeding further, we make use of the following result concerning the solvability of Cauchy problems for pseudoparabolic equations (for the proof we refer to [11,Theorem 2.4]).

    Theorem 4.3. For operators

    $A, B:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2$

    defined in (36), (37), and for any

    $ F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \ \ and\ \ \ \ b\in V_0^\ast\times V_\delta^\ast, $

    the Cauchy problem

    $ (A(t)p)t+B(t)p=F(t),A(T)p(T)=b $

    admits a unique solution.

    In this section we focus on the derivation of the first-order optimality conditions for optimization problem (1)-(5). The Lagrange functional

    $L:(W0(0,T)L2(0,T;H2(Ω)V0))×W1,(0,T;Vδ)×L2(0,T)×L2(0,T)×R×(W0(0,T)L2(0,T;H2(Ω)V0))×W1,(0,T;Vδ)R,$

    associated to problem (1)-(5) (see also Remark 2) is defined by

    $L(w,u,g,h,λ,p,q)=λJ(g,h,w,u)T0[A1(w,u),pV0;V0+A2(w,u),qVδ;Vδ]dt=λJ(g,h,w,u)T0[˙w,pV0;V0νwxx,pV0;V0+((wu)x,p)H+12((r0+2η)ux,p)H]dtT0[˙u(δ˙ux)x,qVδ;Vδ+12((u2)x,q)H+(μwx,q)H(f,q)H]dtT0[(δ(L)˙ux(t,L)+σ1(t)u(t,L)h)q(t,L)(δ(0)˙ux(t,0)+σ0(t)u(t,0)g)q(t,0)]dt=λJ(g,h,w,u)T0[˙w,pV0;V0νwxx,pV0;V0+((wu)x,p)H+12((r0+2η)ux,p)H]dtT0[˙u,qVδ;Vδ+Ωδ˙uxqxdx+12((u2)x,q)H+(μwx,q)H(f,q)H]dtT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt.$

    Let us shift the correspondent derivatives from $w$ and $u$ to Lagrange multipliers $p$ and $q$, taking into account the initial and boundary conditions (3)-(4):

    $L(w,u,g,h,λ,p,q)=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙qVδ;Vδ+Ωδux˙qxdx+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)Vδ;VδΩδux(T)qx(T)dx+u(0,),q(0,)Vδ;Vδ+Ωδux(0)qx(0)dxT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙qVδ;Vδ+Ωδux˙qxdx+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)(δqx(T,))xVδ;Vδδ(L)u(T,L)qx(T,L)+δ(0)u(T,0)qx(T,0)+u(0,)(δux(0,))x,q(0,)Vδ;VδT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt12T0(u2(t,L)q(t,L)u2(t,0)q(t,0))dt=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙q(δ˙qx)xVδ;Vδ+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)(δqx(T,))xVδ;VδT0[(σ1(t)q(t,L)(δ(L)˙qx(t,L))u(t,L)h(t)q(t,L)]dtT0[σ0(t)(q(t,0)(δ(0)˙qx(t,0))u(t,0)g(t)q(t,0)]dt12T0(u2(t,L)q(t,L)u2(t,0)q(t,0))dt.$

    For each fixed $(p,q)\in \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)$ the Lagrangian is continuously Frechet-differentiable with respect to

    $ (w,u,g,h)\in \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)\times L^2(0,T)\times L^2(0,T). $

    Notice that, for a fixed $t$, we have $u\in V\subset C(\overline{\Omega})$ and $w\in V_0\subset C(\overline{\Omega})$, hence, the inner products $(w_x(t)u(t)+w(t)u_x(t),p(t))_{H}$ and $(u(t) u_x(t),q(t))_H$ are correctly defined almost everywhere in $[0,T]$.

    Further we make use of the following relation $\eta_t = -\frac{1}{2}r_0 u_x$ that was introduced in [3]. Substituting this one to (2), we have $\nu\eta_{xx} = (\eta u)_x = \eta_x u+u_x\eta$.

    Also, to simplify the deduction and in order to avoid the demanding of the increased smoothness on solutions of the initial Boussinesq system (2)-(5), we use (see [4] and [5]) elastic model for the hydrodynamic pressure

    $ P(t,x) = P_{ext}+\frac{\beta }{r_{0}^{2}}\eta $

    instead of the inertial one

    $ P=Pext+βr20η+ρωh2ηt2=Pext+βr20η12ρωhr0uxt. $ (38)

    Indeed, if we suppose the wall thickness $h$ to be small enough, the last term in the inertial model (38) appears negligible.

    As a result, the cost functional $J(g,h,w,u)$, where $\eta = w+\eta^\ast$, takes the form

    $ J(g,h,w,u)=12ΩαΩ(u(T)uΩ)2dx+12T0Ω((w(t)u(t))x+ux(t)η)2dxdt+12T0|ΩαQ(w(t)+ηηQ)dx|2dt+12T0(βg|g|2+βh|h|2)dt. $ (39)

    In order to formulate the conjugate system for an optimal solution $(g^0,h^0,\eta^0,u^0)$, where $\eta^0 = w^0+\eta^\ast$, we have to find the Fréchet differentials $\mathcal{L}_w z$ and $\mathcal{L}_u v$, where

    $ z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T). $

    With that in mind we emphasize the following point. Since the elements

    $ w+z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ u+v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T) $

    are some admissible solutions to OCP (39), (2)-(5), it follows that the increments $z$ and $v$ satisfy the homogeneous initial and boundary conditions, i.e.

    $ \left\{ z(0,)=0    in  Ω,v(0,)(δ()vx(0,))x=0    in  Ω, \right. $ (40)
    $ \left\{ z(,0)=z(,L)=0     in  (0,T),δ(0)˙vx(,0)+σ0v(,0)=0,     in  (0,T),δ(L)˙vx(,L)+σ1v(,L)=0,     in  (0,T),δ(L)vx(0,L)=δ(0)vx(0,0)=0. \right. $ (41)

    Taking into account the definition of the Fréchet derivative of nonlinear mappings, we get

    $ J(g,h,w+z,u) = J(g,h,w,u)+{{J}_{w}}z+{{R}_{0}}(w,z), $

    where $R_0(w,z)$ stands for the remainder, which takes the form

    $ R0(w,z)=12T0Ω((zu)x)2dxdt+T0|ΩaQz(t)|2dt, $ (42)

    and

    $Jwz=J(g,h,w+z,u)J(g,h,w,u)R0(w,z)=12T0Ω(((w(t)+z(t))u(t))x+ux(t)η)2dxdt12T0Ω((w(t)u(t))x+ux(t)η)2dxdt+12T0|ΩαQ(w(t)+z(t)+ηηQ)dx|2dt12T0|ΩαQ(w(t)+ηηQ)dx|2dt=T0Ω((w(t)u(t))x+ux(t)η)((z(t)u(t))x)dxdt+T0(ΩαQ(w(t)+ηηQ)dx)(ΩαQz(t)dx)dt=T0Ω(wxu+uxw+uxη)(uxz+zxu)dxdt+α2QT0Ω(Ω(w(t)+ηηQ)dx)z(t)dxdt=T0Ω[(wxuxu+(ux)2w+(ux)2η)(wxu2+uxuw+uxuη)x]z(t)dxdt+α2QT0Ω(Ω(w(t)+ηηQ)dx)z(t)dxdt.$

    It is obviously follows from (42) that

    $ \frac{|R_0(w,x)|}{\|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}}\rightarrow 0\ \ \ \ \text{as}\ \ \ \ \|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}\to 0. $

    Hence, after some transformations, we have

    $ Jwz=T0Ω(u[uxx(w+η)+2uxwx+wxxu]+α2QΩ(w(t)+ηηQ)dx)z(t)dxdt. $ (43)

    Treating similarly to the other derivative, we obtain

    $ J(g,h,w,u+v) = J(g,h,w,u)+J_u v+\widetilde{\mathcal{R}}_0(u,v), $

    where the remainder $\widetilde{\mathcal{R}}_0(u,v)$ takes the form

    $ ˜R0(u,v)=12ΩaΩv2(T)dx+12T0Ω((wv)x+vxη)2dxdt,|˜R0(u,v)|/vW1,(0,T;Vδ)0   as   vW1,(0,T;Vδ)0, $ (44)

    and

    $ Juv=J(g,h,w,u+v)J(g,h,w,u)˜R0(u,v)=12ΩαΩ(u(T)+v(T)uΩ)2dx12ΩαΩ(u(T)uΩ)2dx+12T0Ω((w(t)(u(t)+v(t)))x+(ux(t)+vx(t))η)2dxdt12T0Ω((w(t)u(t))x+ux(t)η)2dxdt=ΩαΩ(u(T)uΩ)v(T)dxT0Ω(w+η)[uxx(w+η)+2uxwx+wxxu]dxdt+T0η((w0(t,L)u0(t,L))x+u0xη)v(t,L)dtT0η((w0(t,0)u0(t,0))x+u0x(t,0)η)v(t,0)dt. $ (45)

    We are now in a position to identify the Fréchet derivatives $\mathcal{L}_w$ and $\mathcal{L}_v$ of the Lagrangian. Following in a similar manner, we have

    $Lwz=λJwz+T0[z,˙pV0;V0+νz,pxxV0;V0+(zu,px)H+(z,(μq)x)H]dtz(T),p(T)V0;V0$

    and

    $Luv=λJuv+T0[(wv,px)H+12(v,((r0+2η)p)x)H]dt+T0[v,˙qδ(˙qx)xVδ;Vδ+(uv,qx)H]dtv(T,),q(T,)(δqx(T,))xVδ;VδT0[(σ1(t)q(t,L)δ(L)˙qx(t,L))v(t,L)(σ0(t)q(t,0)δ(0)˙qx(t,0))v(t,0)]dtT0(u(t,L)v(t,L)q(t,L)u(t,0)v(t,0)q(t,0))dtδ(L)v(T,L)qx(T,L)+δ(0)v(T,0)qx(T,0).$

    As for the Fréchet derivatives $\mathcal{L}_g$ and $\mathcal{L}_h$, direct calculations leads us to the following representation:

    $Lgk(t)=L(w,u,g+k,h,p,q)L(w,u,g,h,p,q)R(g,k)=T0βgg(t)k(t)dtT0k(t)q(t,0)dtR(g,k),Lhl(t)=L(w,u,g,h+l,p,q)L(w,u,g,h,p,q)R(h,l)=T0βhh(t)l(t)dt+T0l(t)q(t,L)dtR2(h,l),$

    where

    $ R1(g,k)=12T0βgk2(t)dt,    R2(h,l)=12T0βhl2(t)dt,|R1(g,k)|/kL2(0,T)0  as  kL2(0,T)0, and  |R2(h,l)|/lL2(0,T)0  as  lL2(0,T)0. $

    Taking into account the calculations given above, we arrive at the following representation of the first-order optimality conditions for OCP (2)-(5), (39).

    Theorem 5.1. Let $(g^0,h^0,\eta^0,u^0)$, where $\eta^0 = w^0+\eta^\ast$, be an optimal solution to the optimal control problem (1)-(5). Then there exists a unique pair

    $ (p,q)\in \Big[W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big]\times W^{1,\infty}(0,T;V_\delta) $

    such that the following system

    $ T0[˙w0(t),φV0;V0+((w0(t)u0(t))x,φ)H+ν(w0x(t),φx)H+12(r0u0x(t)+2ηu0x(t),φ)H]dt=0, $ (46)
    $ T0[˙u0(t),ψVδ;Vδ+Ωδ˙u0x(t)ψxdx+(u0(t)u0x(t),ψ)H+(μ(t)w0x(t),ψ)H+σ1(t)u0(t,L)ψ(L)σ0(t)u0(t,0)ψ(0)]dt=T0[(f(t),ψ)H+h0(t)ψ(L)g0(t)ψ(0)]dt, $ (47)
    $ T0[˙p(t),φ(t)V0;V0+νpxx(t),φ(t)V0;V0+(px(t)u0(t),φ(t))H+((μq(t))x,φ(t))H]dt(p(T),φ(T))H=T0Ω(u0[u0xxη0+2u0xη0x+η0xxu0])φ(t)dxdtT0Ω(α2QΩ(η0(t)ηQ(t))dx)φ(t)dxdt, $ (48)
    $ T0[˙q(t)(δ˙qx(t))x,ψ(t)Vδ;Vδ+(qx(t)u0(t),ψ(t))H]dt+T0[(px(t)η0(t),ψ(t)))H+12((r0p(t))x,ψ(t))H]dtT0[(σ1(t)+u0(t,L))q(t,L)δ(L)˙qx(t,L)]ψ(t,L)dt+T0[(σ0(t)+u0(t,0))q(t,0)δ(0)˙qx(t,0)]ψ(t,0)dtv(T,),q(T,)(δqx(T,))xVδ;Vδδ(L)qx(T,L)ψ(T,L)+δ(0)qx(T,0))ψ(T,0)=T0Ωη0[u0xx(t)η0(t))+2u0x(t)η0x(t)+η0xx(t)u0(t)]ψ(t)dxdtΩaΩ(u0(T)uΩ)ψ(T)dxT0η(η0x(t,L)u0(t,L)+ηu0x(t,L))ψ(t,L)dt+T0η(η0x(t,0)u0(t,0)+ηu0x(t,0))ψ(t,0)dt, $ (49)
    $ T0(βgg0(t)q(t,0))(g(t)g0(t))dt0,    gGad, $ (50)
    $ T0(βhh0(t)+q(t,L))(h(t)h0(t))dt0    hHad, $ (51)
    $ η0(t)=w0(t)+η, $ (52)
    $ δ(L)u0x(0,L)=0,    δ(0)u0x(0,0)=0,    δ(L)qx(T,L)=0,    δ(0)qx(T,0)=0, $ (53)
    $ w0(0)=η00η,    p(T)=0,    p(,0)=p(,L)=0, $ (54)
    $ u0(0)(δu0x(0))x=u0,    q(T)(δqx(T))x=λaΩ(u0(T)uΩ) $ (55)

    holds true for all

    $\varphi\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0),\ \psi\in W^{1,\infty}(0,T;V_\delta),\ \varphi\in V_0, \ \psi\in V_\delta,$

    and a.e. $t\in[0,T]$.

    Proof. Since the derived optimality conditions (46)-(55) are the direct consequence of the Lagrange principle, we focus on the solvability of the variational problems (48)-(49) for the adjoint variables $p$ and $q$. To do so, we represent the system (48)-(49) as the corresponding equalities in the sense of distributions, namely,

    $ pt+νpxx+pxu0+(μq)x=λu0[u0xxη0+2u0xη0x+η0xxu0]λ(αQ)2Ω(η0ηQ)dx, $ (56)
    $ [q(δqx)x]t+qxu0+pxη0+12(r0p)x=λη0[u0xxη0+2u0xη0x+η0xxu0], $ (57)
    $ δ(L)˙qx(,L)(σ1+u0(,L))q(,L)=λη(η0x(,L)u0(,L)+u0x(,L)η), $ (58)
    $ δ(0)˙qx(,0)(σ0+u0(,0))q(,0)=λη(η0x(,0)u0(,0)+u0x(,0)η), $ (59)
    $ q(T)(δqx(T))x=λaΩ(u0(T)uΩ), $ (60)
    $ δ(L)qx(T,L)=δ(0)qx(T,0)=0, $ (61)
    $ p(T)=0,    p(,0)=p(,L)=0. $ (62)

    In the operator presentation, the system (56)-(62) takes the form (see [11]):

    $ (A(t)p)t+B(t)p=F(t),    A(T)p(T)=b, $

    where the operators

    $A(t), B(t): L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2$

    are defined in (36)-(37), and

    $b=(0,λaΩ(u0(T)uΩ),0,0)V0×V0×R×R,F(t)=(f1,f2,ϕ1,ϕ2)t[L2(0,T;V0)]2×[L2(0,T)]2,f1(t)=λu0[u0xxη0+2u0xη0x+η0xxu0]λ(αQ)2Ω(η0ηQ)dx,f2(t)=λη0[u0xxη0+2u0xη0x+η0xxu0],ϕ1(t)=λη(η0x(t,L)u0(t,L)+u0x(t,L)η),ϕ2(t)=λη(η0x(t,0)u0(t,0)+u0x(t,0)η).$

    As a result, the existence of a unique pair $(p(t),q(t))$ satisfying the system (48)-(51) is a mere consequence of Theorem 5.1. Moreover, since the Cauchy problem has a solution for any

    $ F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \text{ and }\ {\bf{b}}\in V_0^\ast\times V_0^\ast\times\mathbb{R}\times\mathbb{R}, $

    the Lagrange multiplier $\lambda$ in the definition of the Lagrange functional

    $\mathcal{L} = \mathcal{L}(w,u,g,h,\lambda,p,q)$

    can be taken equal to $1$.

    [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
    [2] J. Alastruey, Propagation in the Cardiovascular System: Development, Validation and Clinical Applications, Ph.D thesis, Imperial College London, 2006.
    [3] Boundary control for an arterial system. J. of Fluid Flow, Heat and Mass Transfer (2016) 3: 25-33.
    [4] Flow optimization of the vascular networks. Mathematical Biosciences and Engineering (2017) 14: 607-624.
    [5] On boundary optimal control problem for an arterial system: Existence of feasible solutions. Journal of Evolution Equations (2018) 1-42.
    [6] On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media (2014) 9: 501-518.
    [7] On optimization of a highly re-entrant production system. Networks and Heterogeneous Media (2016) 11: 415-445.
    [8] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Mathods for Science and Technology, Vol. 5: Evolutional Problems I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1
    [9] Numerical modeling of 1D arterial networks coupled with a lumped parameters, description of the heart. Comput. Methods Biomech. Biomed. Eng. (2006) 9: 273-288.
    [10] L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Verlag, Berlin, 2010.
    [11] H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
    [12] F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21571-6
    [13] M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Russian).
    [14] A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985.
    [15] F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study, ASME Journal of Biomechanical Engineering, 140 (2018), 031006. doi: 10.1115/1.4038430
    [16] Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry. Computers & Mathematics with Applications (2018) 75: 4022-4027.
    [17] Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol (2005) 99: 1523-1537.
    [18] Numerical modeling of the pressure wave propagation in the arterial flow. International Journal for Numerical Methods in Fluids (2003) 43: 651-671.
    [19] The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications. Acta Numerica (2017) 16: 365-590.
    [20] Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol. (2009) 297: H208-H222.
    [21] Computational modeling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Internat. J. for Numerical Methods in Fluids (2003) 43: 673-700.
  • This article has been cited by:

    1. Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420041, 10.1063/5.0026464
    2. Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420042, 10.1063/5.0026462
    3. Евгений Сергеевич Барановский, Evgenii Sergeevich Baranovskii, Задача оптимального стартового управления для двумерных уравнений Буссинеска, 2022, 86, 1607-0046, 3, 10.4213/im9099
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6351) PDF downloads(239) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog