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Abstract. We discuss a control constrained boundary optimal control prob-
lem for the Boussinesq-type system arising in the study of the dynamics of

an arterial network. We suppose that the control object is described by an

initial-boundary value problem for 1D system of pseudo-parabolic nonlinear
equations with an unbounded coefficient in the principle part and the Robin-

type of boundary conditions. The main question we study in this part of the

paper is about the existence of optimal solutions and first-order optimality
conditions.

1. Introduction. The main goal of this paper is to study one class of optimal
control problems (OCPs) for a viscous Boussinesq system arising in the study of the
dynamics of cardiovascular networks. We consider the boundary control problem for
a 1D system of coupled PDEs with the Robin-type boundary conditions, describing
the dynamics of pressure and flow in the arterial segment. We discuss in this part
of paper the existence of optimal solutions and provide a substantial analysis of the
first-order optimality conditions. Namely, we deal with the following minimization
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problem:

Minimize J(g, h, η, u) :=
1

2

∫
Ω

αΩ (u(T )− uΩ)
2
dx+

ν

2

∫ T

0

∫
Ω

(ηxx)
2
dxdt

+
1

2

∫ T

0

∣∣∣∣∫
Ω

αQ

(
η(t) + r0uxt(t)− ηQ

)
dx

∣∣∣∣2 dt+
1

2

∫ T

0

(
βg |g|2 + βh |h|2

)
dt (1)

subject to the constraints
ηt + ηxu+ ηux +

1

2
r0ux − νηxx = 0 in Q,

[u− (δux)x]t +
1

2

(
u2
)
x

+ µηx = f in Q,
(2)

{
η(0, ·) = η0 in Ω,

u(0, ·)− (δ(·)ux(0, ·))x = u0 in Ω,
(3)


η(·, 0) = η(·, L) = η∗ in (0, T ),

δ(0)u̇x(·, 0) + σ0u(·, 0) = g, in (0, T ),

δ(L)u̇x(·, L) + σ1u(·, L) = h, in (0, T ),

δ(L)ux(0, L) = δ(0)ux(0, 0) = 0

(4)

and

(g, h) ∈ Gad ×Had ⊂ L2(0, T )× L2(0, T ). (5)

Here, βg, βh, and η∗ are positive constants, and Gad and Had are the sets of ad-
missible boundary controls. These sets and the rest of notations will be specified in
the next section.

Optimal control problem (1)–(5) comes from the fluid dynamic models of blood
flows in arterial systems. It is well known that the cardiovascular system consists
of a pump that propels a viscous liquid (the blood) through a network of flexible
tubes. The heart is one key component in the complex control mechanism of main-
taining pressure in the vascular system. The aorta is the main artery originating
from the left ventricle and then bifurcates to other arteries, and it is identified by
several segments (ascending, thoracic, abdominal). The functionality of the aorta,
considered as a single segment, is worth exploring from a modeling perspective, in
particular in relationship to the presence of the aortic valve.

In the first part of our investigation (see [5]) we make use of the standard viscous
hyperbolic system (see [2, 21]) which models cross-section area S(x, t) and average
velocity u(x, t) in the spatial domain:

∂S

∂t
+
∂(Su)

∂x
− ν ∂

2S

∂x2
= 0, (6)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= f, (7)

where (t, x) ∈ Q = (0, L) × (0, T ), f = f(x, t) is a friction force, usually taken to
be f = −22µπu/S, µ is the fluid viscosity, P (x, t) is the hydrodynamic pressure,
L is the length of an arterial segment, and T = Tpulse = 60/(HartRate) is the
duration of an entire heartbeat. Here we include the inertial effects of the wall
motion, described by the wall displacement η = η(x, t):
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η = r − r0 =
1√
π

(
√
S −

√
S0) ' S − S0

2
√
πS0

, (8)

where r(x, t) is the radius, r0 = r(x, 0), S0 = S(x, 0).
The fluid structure interaction is modeled using inertial forces, which gives the

pressure law

P = Pext +
β

r2
0

η + ρωh
∂2η

∂t2
. (9)

Here, Pext is the external pressure, β = E
1−σ2h, σ is the Poisson ratio (usually

σ2 = 1
2 ), E is Young modulus, h is the wall thickness, m = ρωh

2
√
πS0

, ρω is the density

of the wall.
This leads to the following Boussinesq system:

ηt + ηxu+ ηux +
1

2
r0ux − νηxx = 0,

ut + uux +
2Eh

ρr2
0

ηx +
ρωh

ρ
ηxtt = f,

where ρ is the blood density. Considering the relation ηt = − 1
2r0ux and rearranging

terms in u we get the system in the form (2)–(3). It remains to furnish the system
by corresponding initial and boundary conditions which we propose to take in the
form (3)–(4).

As for the OCP that is related with the arterial system, we are interested in
finding the optimal heart rate (HR) which leads to the minimization of the following
cost functional

J =

∫ t0+Tpulse

t0

|Pavg(t)− Pref |2 dt =

∫ t0+Tpulse

t0

∣∣∣∣∣ 1L
∫ L

0

P (x, t) dx− Pref

∣∣∣∣∣
2

dt.

(10)

The systolic period is taken to be consistently one quarter of Tpulse, and Pref = 100
mmHg.

It is easy to note that relations (8)–(9) lead to the following representation for
the cost functional (10)

J =

∫ t0+Tpulse

t0

∣∣∣∣∣ 1L
∫ L

0

P (x, t) dx− Pref

∣∣∣∣∣
2

dt

=
1

L2

∫ t0+Tpulse

t0

∣∣∣∣∣
∫ L

0

(
Pext(t) +

2Eh

r2
0

η(t, x) + ρωh ηtt(t, x)− LPref
)
dx

∣∣∣∣∣
2

dt.

(11)

Since ηt ≈ −1
2r0ux (see [3]) and we suppose that νηxx should be small enough, it

easily follows from (11) that the given cost functional (10) can be reduced to the
tracking type (1).

The research in the field of the cardiovascular system is very active (see, for in-
stance the literature describing the dynamics of the vascular network coupled with
a heart model, [2, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21]). However, there seems to
be no studies that focus on both aspects at the same time: a detailed description
of the four chambers of the heart and on the spatial dynamics in the aorta. Some
numerical aspects of optimizing the dynamics of the pressure and flow in the aorta
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as well as the heart rate variability, taking into account the elasticity of the aorta
together with an aortic valve model at the inflow and a peripheral resistance model
at the outflow, based on the discontinuous Galerkin method and a two-step time
integration scheme of Adam-Bashfort, were recently treated in [3] for the Boussi-
nesq system like (2). More broadly, theory and applications of optimization and
control in spatial networks, basing on the different types of conservation laws have
been extensively developed in literature, have been successfully applied to telecom-
munications, transportation or supply networks ([6, 7]).

From mathematical point of view, the characteristic feature of the Boussinesq sys-
tem (2) is the fact that it involves a pseudo-parabolic operator with unbounded co-
efficient in its principle part. In the first part of this paper it was shown that for any
pair of boundary controls g ∈ Gad and h ∈ Had, and for given f ∈ L∞(0, T ;L2(Ω)),
µ ∈ L∞(0, T ;L2(Ω)), σ0 ∈ L∞(0, T ), σ1 ∈ L∞(0, T ), u0 ∈ Vδ, η0 ∈ H1

0 (Ω),
r0 ∈ H1(Ω), and δ ∈ L1(Ω), the set of feasible solutions to optimal control
problem (1)–(5) is non-empty and the corresponding weak solution (η(t), u(t))
of the viscous Boussinesq system (2)–(4) possesses the extra regularity properties
ηxx, uxt ∈ L2(0, T ;L2(Ω)), which play a crucial role in the proof of solvability of
OCP (1)–(5). In this paper we deal with the existence of optimal solutions and de-
rive the corresponding optimality conditions for the problem (1)–(5). It should be
mentioned, that application of Lagrange principle requires even higher smoothness
of solutions to the initial Boussinesq system (2)–(4). In order to avoid such limita-
tions, we deal with a simplified version of the initial optimal control problem (2)–(4)
(see (39), argumentation above and [3, 5] for physical description of the considered
model). Also, in the second part of the paper, in order to provide the thorough
substantiation of the first-order optimality conditions to the considered OCP, we
make the special assumption for δ to be an element of the class H1(Ω). Since the
coefficient δ depends on such indicators as wall thickness, density of the wall and
blood density, i.e. indicators varying slowly and smoothly, such assumption seems
justified.

2. Preliminaries. Let T > 0 and L > 0 be given values. We set Ω = (0, L),
Q = (0, T )×Ω, and Σ = (0, T )× ∂Ω. Let δ ∈ H1(Ω) be a given function such that
δ(x) ≥ δ0 > 0 for a.e. x ∈ Ω. We use the standard notion L2(Ω, δ dx) for the set of
measurable functions u on Ω such that

‖u‖L2(Ω,δ dx) =

(∫
Ω

u2δ dx

)1/2

< +∞.

We set H = L2(Ω), V0 = H1
0 (Ω), V = H1(Ω), and identify the Hilbert space H with

its dual H∗. On H we use the common natural inner product (·, ·)H , and endow
the Hilbert spaces V0 and V with the inner products

(ϕ,ψ)V0 = (ϕ′, ψ′)H ∀ϕ,ψ ∈ V0

and

(ϕ,ψ)V = (ϕ,ψ)H + (ϕ′, ψ′)H ∀ϕ,ψ ∈ V,
respectively.

We also make use of the weighted Sobolev space Vδ as the set of functions u ∈ V
for which the norm

‖u‖Vδ =

(∫
Ω

(
u2 + δ(u′)2

)
dx

)1/2
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is finite. Note that due to the following estimate, Vδ is complete with respect to the
norm ‖ · ‖V,δ:

‖u‖2V :=

∫
Ω

(
u2 + (u′)2

)
dx ≤ max

{
1, δ−1

0

}∫
Ω

(
u2 + δ(u′)2

)
dx

= max
{

1, δ−1
0

}
‖u‖2Vδ . (12)

Recall that V0, V , and, hence, Vδ are continuously embedded into C(Ω), see [1, 14]
for instance. Since δ, δ−1 ∈ L1(Ω), it follows that Vδ is a uniformly convex separable
Banach space [14]. Moreover, in view of the estimate (12), the embedding Vδ ↪→ H
is continuous and dense. Hence, H = H∗ is densely and continuously embedded in
V ∗δ , and, therefore, Vδ ↪→ H ↪→ V ∗δ is a Hilbert triplet (see [11] for the details).

Let us recall some well-known inequalities, that will be useful in the sequel (see
[5]).

• ‖u‖L∞(Ω) ≤
√

2 max {L,L−1}‖u‖V , ∀u ∈ V and

‖u‖L∞(Ω) ≤ 2
√
L ‖u‖V0 , ∀u ∈ V0.

• (Friedrich’s Inequality) For any u ∈ V0, we have

‖u‖H ≤ L‖ux‖H = L‖u‖V0 . (13)

By L2(0, T ;V0) we denote the space of measurable abstract functions (equivalence
classes) u : [0, T ]→ V such that

‖u‖L2(0,T ;V0) :=

(∫ T

0

‖u(t)‖2V0
dt

)1/2

< +∞.

By analogy we can define the spaces L2(0, T ;Vδ), L
∞(0, T ;H), L∞(0, T ;Vδ), and

C([0, T ];H) (for the details, we refer to [8]). In what follows, when t is fixed, the
expression u(t) stands for the function u(t, ·) considered as a function in Ω with
values into a suitable functional space. When we adopt this convention, we write
u(t) instead of u(t, x) and u̇ instead of ut for the weak derivative of u in the sense
of distribution∫ T

0

ϕ(t) 〈u̇(t), v〉V ∗;V dt = −
∫ T

0

ϕ̇(t) 〈u(t), v〉V ∗;V dt, ∀ v ∈ V,

where 〈·, ·〉V ∗;V denotes the pairing between V ∗ and V .
We also make use of the following Hilbert spaces

W0(0, T ) =
{
u ∈ L2(0, T ;V0) : u̇ ∈ L2(0, T ;V ∗0 )

}
,

Wδ(0, T ) =
{
u ∈ L2(0, T ;Vδ) : u̇ ∈ L2(0, T ;V ∗δ )

}
,

supplied with their common inner product, see [8, p. 473], for instance.

Remark 1. The following result is fundamental (see [8]): Let (V,H, V ∗) be a
Hilbert triplet, V ↪→ H ↪→ V ∗, with V separable, and let u ∈ L2(0, T ;V ) and
u̇ ∈ L2(0, T ;V ∗). Then

(i) u ∈ C([0, T ];H) and ∃CE > 0 such that

max
1≤t≤T

‖u(t)‖H ≤ CE
(
‖u‖L2(0,T ;V ) + ‖u̇‖L2(0,T ;V ∗)

)
;

(ii) if v ∈ L2(0, T ;V ) and v̇ ∈ L2(0, T ;V ∗), then the following integration by
parts formula holds:∫ t

s

(
〈u̇(γ), v(γ)〉V ∗;V + 〈u(γ), v̇(γ)〉V ∗;V

)
dγ = (u(t), v(t))H − (u(s), v(s))H (14)
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for all s, t ∈ [0, T ].

The similar assertions are valid for the Hilbert triplet Vδ ↪→ H ↪→ V ∗δ .

3. On solvability of optimal control problem (1)–(5). Let ν > 0 be a viscosity
parameter, and let

f ∈ L∞(0, T ;H), µ ∈ L∞(0, T ;V ), σ0 ∈ L∞(0, T ), σ1 ∈ L∞(0, T ), (15)

αΩ ∈ L∞(Ω), αQ ∈ L∞(Q), uΩ ∈ L2(Ω), ηQ ∈ L2(0, T ;H), (16)

u0 ∈ Vδ, η0 ∈ H1
0 (Ω), r0 ∈ H1(Ω), (17)

be given distributions. In particular, f stands for a fixed forcing term, uΩ and ηQ
are given desired states for the wall displacement and average velocity, respectively,
αΩ and αQ are non-negative weights (without loss of generality we suppose that
αQ is a nonnegative constant function on [0, T ]× [0, L]), u0 and η0 are given initial
states, and δ is a singular (possibly locally unbounded) weight function such that
δ(x) ≥ δ0 > 0 for a.e. x ∈ Ω.

We assume that the sets of admissible boundary controls Gad and Had are given
as follows

Gad =
{
g ∈ L2(0, T ) : g0 ≤ g ≤ g1 a.e. in (0, T )

}
,

Had =
{
h ∈ L2(0, T ) : h0 ≤ h ≤ h1 a.e. in (0, T )

}
,

(18)

where g0, h0, g1, h1 ∈ L∞(0, T ) with g0(t) ≤ g1(t) and h0(t) ≤ h1(t) almost every-
where in (0, T ).

The optimal control problem we consider in this paper is to minimize the dis-
crepancy between the given distributions (uΩ, ηQ) ∈ L2(Ω) × L2(Q) and the pair
of distributions (u(T ), η(t) + ηtt(t)) (see, for instance, [5] for the physical interpre-
tation), where (η(t), u(t)) is the solution of a viscous Boussinesq system, by an
appropriate choice of boundary controls g ∈ Gad and h ∈ Had. Namely, we deal
with the minimization problem (1)–(5).

Definition 3.1. We say that, for given boundary controls g ∈ Gad and h ∈ Had,
a couple of functions (η(t), u(t)) is a weak solution to the initial-boundary value
problem (2)–(4) if

η(t) = w(t) + η∗, w(·) ∈W0(0, T ), u(·) ∈Wδ(0, T ), (19)

δ(L)ux(0, L) = 0, δ(0)ux(0, 0) = 0, (20)

(w(0), χ)H = (η0 − η∗, χ)H for all χ ∈ H, (21)

(u(0)− (δux(0))x, χ)Vδ = (u0, χ)Vδ for all χ ∈ Vδ, (22)

and the following relations

〈ẇ(t), ϕ〉V ∗0 ;V0
+ ((w(t)u(t))x, ϕ)H + ν(wx(t), ϕx)H

+
1

2
(r0ux(t) + 2η∗ux(t), ϕ)H = 0, (23)

〈u̇(t), ψ〉V ∗δ ;Vδ +

∫
Ω

δu̇x(t)ψx dx+ (u(t)ux(t), ψ)H + (µ(t)wx(t), ψ)H

+ σ1(t)u(t, L)ψ(L)− σ0(t)u(t, 0)ψ(0)

= (f(t), ψ)H + h(t)ψ(L)− g(t)ψ(0) (24)

hold true for all ϕ ∈ V0 and ψ ∈ Vδ and a.e. t ∈ [0, T ].
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Remark 2. Let us mention that if we multiply the left- and right-hand sides of
equations (23)–(24) by function χ ∈ L2(0, T ) and integrate the result over the
interval (0, T ), all integrals are finite. Moreover, closely following the arguments
of Korpusov and Sveshnikov (see [13]), it can be shown that the weak solution to
(2)–(4) in the sense of Definition 3.1 is equivalent to the following one: (η(t), u(t))
is a weak solution to the initial-boundary value problem (2)–(4) if the conditions
(19)-(22) hold true and∫ T

0

〈A1(w(t), u(t)), ϕ(t)〉V ∗0 ;V0
dt = 0, ∀ϕ(·) ∈ L2(0, T ;V0), (25)∫ T

0

〈A2(w(t), u(t)), ψ(t)〉V ∗δ ;Vδ
dt = 0, ∀ψ(·) ∈ L2(0, T ;Vδ), (26)

where

A1(w, u) =
∂w

∂t
− νwxx + wxu+ wux +

1

2
r0ux + η∗ux ∈ V ∗0 , (27)

A2(w, u) =


∂
∂t (u− (δux)x) + 1

2

(
u2
)
x

+ µwx − f
δ(0)u̇x(·, 0) + σ0u(·, 0)− g
δ(L)u̇x(·, L) + σ1u(·, L)− h

 ∈ V ∗δ . (28)

Lemma 3.2 ([5]). Assume that the conditions (15)–(17) hold true. Let g ∈ Gad
and h ∈ Had be an arbitrary pair of admissible boundary controls. Then there exists
a unique solution (η(·), u(·)) of the system (2)–(4) in the sense of Definition 3.1
such that

(η(·), u(·)) ∈ (W0(0, T ) + η∗)×Wδ(0, T ),

w ∈ L∞(0, T ;H) ∩ L2(0, T ;H2(Ω) ∩ V0), (29)

ẇ ∈ L2(0, T ;H), u ∈W 1,∞(0, T ;Vδ)

and there exists a constant D∗ > 0 depending only on initial data (15),(17) and
control constrains h1, g1, satisfying the estimates

‖w‖2L2(0,T ;H2(Ω)) + ‖w‖2L∞(0,T ;H) + ‖ẇ‖2L2(0,T ;H) ≤ D∗, (30)

‖u‖2L∞(0,T ;Vδ)
+ ‖u̇‖2L∞(0,T ;Vδ)

≤ D∗. (31)

We also define the feasible set to the problem (1)–(5), (18) as follows:

Ξ =

(g, h, η, u)

∣∣∣∣∣∣∣∣∣∣
g ∈ Gad, h ∈ Had,

η(t) = w(t) + η∗, w ∈W0(0, T ), u ∈Wδ(0, T ),
(w(t), u(t)) satisfies relations (19)–(24)

for all ϕ ∈ V0, ψ ∈ Vδ, and a.e. t ∈ [0, T ],
J(g, h, η, u) < +∞.

 (32)

We say that a tuple
(
g0, h0, η0, u0

)
∈ Ξ is an optimal solution to the problem

(1)–(5), (18) if

J
(
g0, h0, η0, u0

)
= inf

(g,h,η,u)∈Ξ
J(g, h, η, u).

In [5] it was shown that Ξ 6= ∅ and Ξλ = {(g, h, η, u) ∈ Ξ : J(g, h, η, u) ≤ λ} is a
bounded set in L2(0, T )× L2(0, T )× (W0(0, T ) + η∗)×Wδ(0, T ) for every λ > 0.

While proving these hypotheses, the authors in [5] obtained a series of useful
estimates for the weak solutions to initial-boundary value problem (2)–(4).
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Lemma 3.3. [5, Lemmas 6.3 and 6.5 along with Remark 6.5] Let g ∈ Gad and
h ∈ Had be an arbitrary pair of admissible boundary controls. Let (η(·), u(·)) =
(w(·) + η∗, u(·)) be the corresponding weak solution to the system (2)–(4) in the
sense of Definition 3.1. Under assumptions (15)–(17), there exist positive constants
C1, C2, C3 depending on the initial data only such that for a.a. t ∈ [0, T ]

‖w(t)‖2H + ‖u(t)‖2Vδ ≤ C1, ‖ẇ(t)‖V ∗0 ≤ C2, ‖u̇(t)‖Vδ ≤ C3. (33)

In the context of solvability of OCP (18)–(5), the regularity of the solutions of
the corresponding initial-boundary value problem (2)–(4) plays a crucial role.

Theorem 3.4 ([5]). The set of feasible solutions Ξ to the problem (1)–(5), (18) is
nonempty provided the initial data satisfy the conditions (15)-(17).

Now we proceed with the result concerning existence of optimal solutions to OCP
(1)–(5), (18).

Theorem 3.5. For each

f ∈ L∞(0, T ;L2(Ω)), µ ∈ L∞(0, T ;V ), σ0 ∈ L∞(0, T ), σ1 ∈ L∞(0, T ),

αΩ ∈ L∞(Ω), αQ ∈ R+, uΩ ∈ L2(Ω), ηQ ∈W (0, T ;H),

u0 ∈ Vδ, η0 ∈ V0, r0 ∈ H1(Ω), δ ∈ L1(Ω)

the optimal control problem (1)–(5), (18) admits at least one solution (g0, h0, η0, u0).

Proof. We apply for the proof the direct method of the calculus of variations. Let
us take λ ∈ R+ large enough, such that

Ξλ = {(g, h, η, u) ∈ Ξ : J(g, h, η, u) ≤ λ} 6= ∅.

Since the cost functional (1) is bounded below on Ξ, this implies the existence of
a minimizing sequence {(gn, hn, ηn, un)}n≥N ⊂ Ξλ, where ηn = wn + η∗. In [5],
the authors have proved that this sequence is bounded in L2(0, T ) × L2(0, T ) ×
(W0(0, T ) + η∗)×Wδ(0, T ). Moreover, using (30)–(31), we get

‖ηxx‖2L2(0,T ;L2(Ω)) = ‖wxx‖2L2(0,T ;L2(Ω)) ≤ ‖w‖
2
L2(0,T ;H2(Ω)) ≤ D∗,

‖uxt‖2L2(0,T ;H) ≤ max{1, δ−1
0 }‖u̇‖2L∞(0,T ;Vδ)

≤ D∗.

Therefore, within a subsequence, still denoted by the same index, we can suppose
that

gn ⇀ g0 in L2(0, T ), hn ⇀ h0 in L2(0, T ),

un → u0 strongly in L2(0, T ;H),

un
∗
⇀ u0 weakly-∗ in L∞(0, T ;Vδ),

u̇n ⇀ v weakly in L2(0, T ;Vδ) and weakly-∗ in L∞(0, T ;Vδ),

where v = u̇0 in the sense of distributions D′(0, T ;Vδ). Also, by Lemma 3.3 (see
relation (33)), we get

‖un(t)‖2Vδ ≤ C1 for all n ∈ N and for all t ∈ [0, T ],

whence, passing to a subsequence, if necessary, we obtain

un(T, ·) ⇀ u0(T, ·) in Vδ,

un(T, ·)→ u0(T, ·) strongly in H
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due to the continuity of embedding Vδ ↪→ V and the compactness of embedding
V ↪→ H. In view of this, lower semicontinuity of norms in L2(0, T ), L2(Ω) with
respect to the weak convergence and the fact that

ηn(t, x) ⇀ η0(t, x) in V0, u̇(t, x) ⇀ u̇0(t, x) in Vδ for a.e. t ∈ [0, T ],

(ηn(t, x) + r0(x)unxt(t, x)− ηQ) ⇀ (η0(t, x) + r0(x)u0
xt(t, x)− ηQ)) in L1(Ω)

for a.e. t ∈ [0, T ],∫
Ω

aQ(ηn(t, x) + r0(x)unxt(t, x)− ηQ) dx→

→
∫

Ω

aQ(η0(t, x) + r0(x)unxt(t, x)− ηQ)) dx for a.e. t ∈ [0, T ],

lim
n→∞

∫ T

0

(∫
Ω

aQ(ηn(t, x) + r0(x)unxt(t, x)− ηQ)dx

)2

dt

=

∫ T

0

(∫
Ω

aQ(η0(t, x) + r0(x)unxt(t, x)− ηQ))

)2

dt,

we have J(g0, h0, η0, u0) ≤ infn∈N J(gn, hn, ηn, un).

4. Auxiliary results. This section aims to prove a range of auxiliary results that
will be used in the sequel. Throughout this section the tuple (g0, h0, η0, u0), where
η0 = w0 + η∗ denotes an optimal solution to initial OCP problem (1)–(5).

The following proposition aims to prove rather technical result, however it is
useful for substantiation of the first-order optimality conditions to the initial OCP
(1)–(5).

Proposition 1. Let δ ∈ H1(Ω). Then, for the initial data (15)-(17), the following
inclusions take place

u0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
− (αQ)2

∫
Ω

(
η0 − ηQ

)
dx ∈ L2(0, T ;V ∗),

η0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
∈ L2(0, T ;V ∗).

Proof. To begin with, let us prove that

η0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
∈ L2(0, T ;V ∗).

Obviously, in order to show that

u0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
− (αQ)2

∫
Ω

(
η0 − ηQ

)
dx ∈ L2(0, T ;V ∗)

it would be enough to apply the similar arguments. Since η0 ∈W (0, T ;V ) ↪→ C(Q),

it is enough to show that there exists C̃ such that∥∥u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
∥∥
V ∗
≤ C̃ for a.a. t ∈ [0, T ].

It should be noticed that as far as

u0
x ∈ L2(Ω; δ dx) ↪→ L2(Ω) for a.a. t ∈ [0;T ],

then u0
xx ∈ (H1(Ω))∗ = V ∗.

Also the fact that η0 ∈ H2(Ω) gives η0
xx ∈ L2(Ω) and η0

x ∈ H1(Ω) ↪→ C(Ω) for
a.a. t ∈ [0;T ]. Therefore, we have
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xx(t)η0(t) + 2u0

x(t)η0
x(t) + η0

xx(t)u0(t)
∥∥
V ∗

= sup
‖v‖V ≤1

〈u0
xx(t)η0(t) + 2u0

x(t)η0
x(t) + η0

xx(t)u0(t), v〉V ∗;V

=

∫
Ω

u0
xx(t)η0(t)v dx+ 2

∫
Ω

u0
x(t)η0

x(t)v dx+

∫
Ω

η0
xx(t)u0(t)v dx

≤ ‖η0(t)‖C(Ω)‖v‖V ‖u
0
xx(t)‖V ∗ + ‖η0

x(t)‖L∞(Ω)‖u0
x(t)‖H‖v‖H

+ ‖u0‖C(Ω)‖ηxx(t)‖H‖v‖H
≤ ‖v‖V

×
(
‖η0(t)‖C(Ω)‖u

0
xx‖V ∗ + ‖η0

x(t)‖L∞(Ω)‖u0
x(t)‖L2(Ω) + ‖u0‖C(Ω)‖ηxx(t)‖L2(Ω)

)
︸ ︷︷ ︸

C(t)

.

It is clear that if only η0 ∈ (W0(0, T ) + η∗)∩L2(0, T ;H2(Ω)∩V ), then we have η0 ∈
C(0, T ;V ), η0 ∈ C(Ω), and η0

x ∈ L2(0, T ;V ). Moreover, from (δu0
x)x = δxu

0
x + δu0

xx

we can deduce that

‖u0
xx‖V ∗ =

∥∥∥∥1

δ

(
(δu0

x)x − δxu0
x

)∥∥∥∥
V ∗
≤ 1

δ0

(
‖(δu0

x)x‖V ∗ + ‖δxu0
x‖V ∗

)
(34)

and

‖C(t)‖2L2(0;T ) ≤
2

δ2
0

‖η0‖2C(0,T ;H)

∫ T

0

(
‖(δu0

x)x‖2V ∗ + ‖δxu0
x‖2V ∗

)
dt

+
2 max{L,L−1}

δ0

∫ T

0

‖η0
x‖2V ‖u0‖2Vδ dt+ ‖u0‖2C(0,T ;H)

∫ T

0

‖η0
xx‖2H dt

≤ 2

δ2
0

‖η0‖2C(0,T ;H)

∫ T

0

(
‖(δu0

x)x‖2V ∗ + ‖δxu0
x‖2V ∗

)
dt

+
2 max{L,L−1}

δ0
‖u0‖2W 1,∞(0,T ;Vδ)

‖η0‖2L2(0,T ;H2)

+ ‖u0‖2C(0,T ;H)‖η
0‖2L2(0,T ;H2). (35)

Let us show that the integrals
∫ T

0
‖δxu0

x‖2V ∗ dt and
∫ T

0
‖(δu0

x)x‖2V ∗ dt are finite. We

take into account the continuous embedding V ↪→ C(Ω). Then ∃ c(E) such that
‖v‖C(Ω) ≤ c(E)‖v‖V , for all v ∈ V . As for the first integral, we have

∫ T

0

‖δxu0
x(t)‖2V ∗ dt =

∫ T

0

(
sup
‖v‖V ≤1

∫
Ω

|δx||u0
x(t)||v| dx

)2

dt

≤
∫ T

0

(
sup
‖v‖V ≤1

‖v‖C(Ω)‖δ‖V ‖u(t)‖V

)2

dt

≤ c2(E)

δ0
‖v‖2V ‖δ‖2V ‖u‖2L2(0,T ;Vδ)

≤ c2(E)T

δ0
‖δ‖2V ‖u‖2L∞(0,T ;Vδ)

.

Now, to estimate the second integral, we make use of the equation (2)2 and the well
known inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2).
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∫ T

0

‖(δu0
x)x‖2V ∗ dt =

∫ T

0

(
sup
‖v‖V ≤1

∫
Ω

|(δu0
x)xv| dx

)2

dt

=

∫ T

0

(
sup
‖v‖V ≤1

∫
Ω

∣∣∣[ ∫ t

0

(f(s)− u0(s)u0
x(s)− µ(s)η0

x(s))ds+ u0(t)

+ u0 + (δ(u0)x)x

]
v
∣∣∣ dx)2

dt

≤
∫ T

0

2

(
sup
‖v‖V ≤1

∫
Ω

∣∣∣∣∫ t

0

(f(s)v − u0(s)u0
x(s)v − µ(s)η0

x(s)v)ds

∣∣∣∣ dx
)2

dt

+

∫ T

0

2

(
sup
‖v‖V ≤1

∫
Ω

∣∣(u0(t) + u0 + (δ(u0)x)x)v
∣∣ dx)2

dt

≤
∫ T

0

2

(
sup
‖v‖V ≤1

∫
Ω

∫ T

0

|f(s)v − u0(s)u0
x(s)v − µ(s)η0

x(s)v)|ds dx

)2

dt

+

∫ T

0

2

(
sup
‖v‖V ≤1

[
‖u0(t)‖V ‖v‖V + ‖u0‖V ‖v‖V + ‖(δ(u0)x)x‖V ∗‖v‖V

])2

dt

≤
∫ T

0

2

(
sup
‖v‖V ≤1

∫ T

0

∫
Ω

[
|f(s)v|+ |u0(s)u0

x(s)v|+ |µ(s)η0
x(s)v|

]
dx ds

)2

dt

+

∫ T

0

6
([
‖u0(t)‖2V + ‖u0‖2V + ‖(δ(u0)x)x‖2V ∗

])2
dt

≤
∫ T

0

2
(

sup
‖v‖V ≤1

∫ T

0

(
‖f(t)‖H‖v‖V + ‖u0(t)‖C(Ω)‖u

0(t)‖V ‖v‖V

+ ‖µ(t)‖H‖η0(t)‖V ‖v‖C(Ω)

)
ds
)2

dt

+
6T

δ0
‖u0‖2L∞(0,T ;Vδ)

+ 6T‖u0‖2V + 6T‖(δ(u0)x)x‖2V ∗

≤ 6T
[
T‖f‖2L2(0,T ;H) + (c(E))2 max{1, δ−1

0 }T‖u0‖4L∞(0,T ;Vδ)

+ (c(E))2‖µ‖2L2(0,T ;H)‖η
0‖2L2(0,T ;V )

]
+

6T

δ0
‖u0‖2L∞(0,T ;Vδ)

+ 6T‖u0‖2V + 6T‖(δ(u0)x)x‖2V ∗ < +∞.

It is worth to mention here that, in fact, (δ(u0)x)x ∈ (H1(Ω))∗ because the
element δ(u0)x belongs to L2(Ω). Indeed,∫

Ω

(δ(u0)x)2 dx ≤ ‖δ‖C(Ω)

∫
Ω

δ((u0)x)2 dx ≤ c(E)‖δ‖V ‖u0‖Vδ .

It remains to note that the property
∫ T

0

(∫
Ω

(
η0 − ηQ

)
dx
)2
dt < ∞ can be

rewritten as follows
∫

Ω

(
η0 − ηQ

)
dx ∈ L2(0, T ).

Let us consider two operators γ1 and γ2 that define the restriction of the func-
tions from V = H1(Ω) to the boundary ∂Ω = {x = L, x = 0}, respectively (i.e.
γ1[u(t, ·)] = u(t, L) and γ2[u(t, ·)] = u(t, 0)). Also we put into consideration two
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operators

A,B : L2(0, T ;V0)× L2(0, T ;Vδ)→
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2
,

defined on the set of vector functions p = (p, q)t ∈ L2(0, T ;V0) × L2(0, T ;Vδ) by
the rule

(Ap)(t) := A(t)p(t) =


p(t)

q(t)− (δqx(t))x

γ1[δqx(t)]

−γ2[δqx(t)]

 , (36)

(Bp)(t) := B(t)p(t) =


u0px(t) + νpxx(t) + (µq)x(t)(

η0 +
1

2
r0

)
px(t) + 1

2 (r0)x p(t) + u0qx(t)

−(σ1(t) + γ1[u0])γ1[q(t)]

(σ0(t) + γ2[u0])γ2[q(t)]

 . (37)

Here, we use the fact that V ∗δ = V ∗0 ⊕ H−1/2(∂Ω), which in one-dimensional case
obviously turns to V ∗ = V ∗0 ⊕ R ⊕ R and, hence, L2(0, T ;V ∗δ ) = L2(0, T ;V0) ⊕
L2(0, T )⊕ L2(0, T ). Then the following result holds true.

Lemma 4.1. The operator A(t) : V0×Vδ → [V ∗0 ]
2×R×R, defined by (36), satisfies

the following conditions:

A(t) is radially continuous, i.e. for any fixed v1, v2 ∈ V0 × Vδ := Ṽ and
almost each t ∈ (0, T ) the real-valued function s → 〈A(t)(v1 + sv2),v2〉Ṽ ∗;Ṽ
is continuous in [0, 1];
for some constant C and some function g ∈ L2(0, T )

‖A(t)v‖Ṽ ∗ ≤ C‖v‖Ṽ + g(t), for a.e. t ∈ [0, T ], ∀v ∈ Ṽ ;

it is strictly monotone uniformly with respect to t ∈ [0, T ] in the following
sense: there exists a constant m > 0, independent of t, such that

〈A(t)v1 −A(t)v2,v1 − v2〉Ṽ ∗;Ṽ ≥ ‖v
1
1 − v1

2‖2H +m‖v2
1 − v2

2‖2Vδ ,

∀v1, v2 ∈ Ṽ and for a.e. t ∈ [0, T ].

Moreover, the operator B : L2(0, T ;V0)×L2(0, t;Vδ)→
[
L2(0, T ;V ∗0 )

]2×L2(0, T )×
L2(0, T ) possesses the Lipschitz property, i.e. there exists a constant L > 0 such
that

‖Bv1 −Bv2‖L2(0,T ;Ṽ ∗) ≤ L‖v1 − v2‖L2(0,T ;Ṽ ), for all v1, v2 ∈ L2(0, T ; Ṽ ).

Proof. Since the radial continuity of operator A is obvious, we begin with the proof

of the second property. Let v = (v, w), z = (z, y) ∈ Ṽ be arbitrary elements. Then

‖A(t)v‖Ṽ ∗ = sup
‖z‖Ṽ ≤1

|〈A(t)v, z〉Ṽ ∗;Ṽ |

= sup
‖z‖V0+‖y‖Vδ≤1

∣∣∣ ∫
Ω

(vz + wy) dx−
∫

Ω

(δwx)xy dx

+ δ(L)wx(L)y(L)− δ(0)wx(0)y(0)
∣∣∣
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= sup
‖z‖Ṽ ≤1

∣∣∣∣∫
Ω

(vz + wy) dx+

∫
Ω

δwxyx dx

∣∣∣∣
≤ sup
‖z‖Ṽ ≤1

(‖v‖H‖z‖H + ‖w‖H‖y‖H + ‖w‖Vδ‖y‖Vδ)

≤ 2(‖v‖V0
+ ‖y‖Vδ) = 2‖v‖Ṽ .

As for the monotonicity property, for every p1,p2 ∈ V0 × Vδ, we have

〈A(t)p1 −A(t)p2,p1 − p2〉Ṽ ∗;Ṽ =

∫
Ω

(p1 − p2)2 dx+

∫
Ω

(q1 − q2)2 dx

−
∫

Ω

[(δ(q1)x)x − (δ(q2)x)x] (q1 − q2) dx

+ [δ(L)(q1(·, L))x − δ(L)(q2(·, L))x] (q1(·, L)− q2(·, L))

− [δ(0)(q1(·, 0))x − δ(0)(q2(·, 0))x] (q1(·, 0)− q2(·, 0))

= ‖p1 − p2‖H + ‖q1 − q2‖H + ‖q1 − q2‖2L2(Ω,δ dx).

It remains to show the Lipschitz continuity of operator B(t). With that in
mind we consider three vector-valued functions v = (v1, v2)t, w = (w1, w2)t and
z = (z1, z2)t. Then

‖Bv −Bw‖L2(0,T ;Ṽ ∗) = sup
‖z‖Ṽ≤1

∣∣∣〈Bv −Bw, z〉Ṽ ∗;Ṽ
∣∣∣

=

∫ T

0

[ ∣∣(u0(t)(v1x(t)− w1x(t)), z1(t))H
∣∣+ ν |(v1x(t)− w1x(t), z1x(t))H |

+ |(µx(v2(t)− w2(t)), z1(t))H |+ |(µ(v2x(t)− w2x(t)), z1(t))H |

+
1

2

∣∣((r0 + 2η0)(v1x(t)− w1x(t)), z2(t)
)
H

∣∣
+

1

2
|((r0)x(v1(t)− w1(t)), z2(t))H |+

∣∣(u0(t)(v2x(t)− w2x(t)), z2(t))H
∣∣

+
∣∣(σ1(t) + u0(t, L))(v2(t, L)− w2(t, L))z2(t, L)

∣∣
+
∣∣(σ0(t) + u0(t, 0))(v2(t, 0)− w2(t, 0))z2(t, 0)

∣∣ ] dt
≤ ‖u0‖C(Q)‖v1 − w1‖L2(0,T ;V0)‖z1‖L2(0,T ;V0) + ν‖v1 − w1‖L2(0,T ;V0)‖z1‖L2(0,T ;V0)

+

∫ T

0

(
2‖z‖C(Ω)δ

−1/2
0 ‖µ‖V ‖v2 − w2‖Vδ +

1

2
(‖r0 + 2η0‖H

+ ‖r0‖V )‖v1 − w1‖V ‖z2‖C(Ω)

)
dt+ ‖u0‖C(Q)δ

−1
0 ‖v2 − w2‖Vδ‖z2‖Vδ

+

∫ T

0

(
|σ1(t)|+ |σ0(t)|+ 2‖u0(t)‖C(Ω)

)
‖v2(t)− w2(t)‖C(Ω) dt.

Taking into account the continuous embedding Vδ, V0 ↪→ C(Ω) and the correspon-
ding inequality

‖v‖C(Ω) ≤ c(E)‖v‖V ≤ c(E)δ
−1/2
0 ‖v‖Vδ ,

we finally have

‖Bv −Bw‖L2(0,T ;Ṽ ∗) ≤ L‖v −w‖L2(0,T ;Ṽ ),
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where L = max{C1;C2} and

C1 = ‖u0‖C(Q) + ν + c(E)(‖r0‖V + ‖η0‖C(0,T ;H)),

C2 = 2c(E)δ−1
0 ‖µ‖L∞(0,T ;V ) + ‖u0‖C(Q)δ

−1
0 + c(E)(‖σ1‖L2(0,T )

+ ‖σ2‖L2(0,T ) + 2‖u0‖C(Q)).

This concludes the proof.

Lemma 4.2. Operator

A : L2(0, T ;V0)× L2(0, T ;Vδ)→
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2
,

which is defined by (36), is radially continuous, strictly monotone and there exists
an inverse Lipschitz-continuous operator

A−1 :
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2 → L2(0, T ;V0)× L2(0, T ;Vδ)

such that

(A−1f)(t) = A−1(t)f(t) for a.e. t ∈ [0, T ]

and for all f ∈
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2
,

where A−1(t) : [V ∗0 ]
2 × R× R→ V0 × Vδ is an inverse operator to

A(t) : V0 × Vδ → [V ∗0 ]
2 × R× R.

Proof. It is easy to see that the action of operator A(t) on element p = (p, q)t can
be also given by the rule:

A(t)p(t) =

(
A1(t)p(t)

A2(t)q(t)

)
,

A1 : L2(0, T ;V0)→ L2(0, T ;V ∗0 ),

A2 : L2(0, T ;Vδ)→ L2(0, T ;V ∗0 )× L2(0, T )× L2(0, T ),

where

A1(t)p(t) = p(t) and A2(t)q(t) =

 q(t)− (δqx(t))x

γ1[δqx(t)]

−γ2[δqx(t)]

 .

It is easy to see, that A1(t) is the identity operator. Therefore, A−1
1 (t) ≡ A1(t). As

for the operator A2(t), it is strongly monotone for all t ∈ [0, T ] because

〈(A2q1)(t)− (A2q2)(t), q1(t)− q2(t)〉V ∗δ ;Vδ = ‖q1 − q2‖Vδ .
Moreover, A2(t) satisfies all preconditions of [11, Lemma 2.2] that establishes the
existence of a Lipschitz continuous inverse operator

A−1
2 : L2(0, T ;V ∗0 )× L2(0, T )× L2(0, T )→ L2(0, T ;Vδ)

such that

(A−1
2 f)(t) = A−1

2 (t)f(t) for a.e. t ∈ [0, T ] and ∀ f ∈
[
L2(0, T ;V ∗0 )

]
×
[
L2(0, T )

]2
,

where A−1
2 (t) : [V ∗0 ]×R×R→ Vδ is an inverse operator to A2(t) : Vδ → V ∗0 ×R×R.

The proof is complete.

Before proceeding further, we make use of the following result concerning the
solvability of Cauchy problems for pseudoparabolic equations (for the proof we
refer to [11, Theorem 2.4]).



ON BOUNDARY OPTIMAL CONTROL PROBLEM FOR AN ARTERIAL SYSTEM 599

Theorem 4.3. For operators

A,B : L2(0, T ;V0)× L2(0, T ;Vδ)→
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2

defined in (36),(37), and for any

F ∈
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2

and b ∈ V ∗0 × V ∗δ ,

the Cauchy problem

(A(t)p)
′
t +B(t)p = F (t),

A(T )p(T ) = b

admits a unique solution.

5. First-order optimality conditions. In this section we focus on the deriva-
tion of the first-order optimality conditions for optimization problem (1)–(5). The
Lagrange functional

L :
(
W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0)

)
×W 1,∞(0, T ;Vδ)× L2(0, T )× L2(0, T )× R

×
(
W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0)

)
×W 1,∞(0, T ;Vδ)→ R,

associated to problem (1)–(5) (see also Remark 2) is defined by

L(w, u, g, h, λ, p, q) = λJ(g, h, w, u)

−
∫ T

0

[
〈A1(w, u), p〉V ∗0 ;V0

+ 〈A2(w, u), q〉V ∗δ ;Vδ

]
dt

= λJ(g, h, w, u)

−
∫ T

0

[
〈ẇ, p〉V ∗0 ;V0

− ν〈wxx, p〉V ∗0 ;V0
+ ((wu)x, p)H +

1

2
((r0 + 2η∗)ux, p)H

]
dt

−
∫ T

0

[
〈u̇− (δu̇x)x, q〉V ∗δ ;Vδ +

1

2

(
(u2)x, q

)
H

+ (µwx, q)H − (f, q)H

]
dt

−
∫ T

0

[
(δ(L)u̇x(t, L) + σ1(t)u(t, L)− h) q(t, L)

− (δ(0)u̇x(t, 0) + σ0(t)u(t, 0)− g) q(t, 0)
]
dt

= λJ(g, h, w, u)

−
∫ T

0

[
〈ẇ, p〉V ∗0 ;V0

− ν〈wxx, p〉V ∗0 ;V0
+ ((wu)x, p)H +

1

2
((r0 + 2η∗)ux, p)H

]
dt

−
∫ T

0

[
〈u̇, q〉V ∗δ ;Vδ +

∫
Ω

δu̇xqx dx+
1

2

(
(u2)x, q

)
H

+ (µwx, q)H − (f, q)H

]
dt

−
∫ T

0

[σ1(t)u(t, L)q(t, L)− h(t)q(t, L)− σ0(t)u(t, 0)q(t, 0) + g(t)q(t, 0)] dt.

Let us shift the correspondent derivatives from w and u to Lagrange multipliers p
and q, taking into account the initial and boundary conditions (3)–(4):

L(w, u, g, h, λ, p, q) = λJ(g, h, w, u)

+

∫ T

0

[
〈w, ṗ〉V ∗0 ;V0

+ ν〈w, pxx〉V ∗0 ;V0
+ (wu, px)H +

1

2
(u, ((r0 + 2η∗)p)x)H

]
dt
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−
∫

Ω

p(T )w(T ) dx+

∫
Ω

p(0)w(0) dx

+

∫ T

0

[
〈u, q̇〉V ∗δ ;Vδ +

∫
Ω

δuxq̇x dx+
1

2

(
u2, qx

)
H

+ (w, (µq)x)H + (f, q)H

]
dt

− 〈u(T, ·), q(T, ·)〉V ∗δ ;Vδ −
∫

Ω

δux(T )qx(T ) dx

+ 〈u(0, ·), q(0, ·)〉V ∗δ ;Vδ +

∫
Ω

δux(0)qx(0) dx

−
∫ T

0

[σ1(t)u(t, L)q(t, L)− h(t)q(t, L)− σ0(t)u(t, 0)q(t, 0) + g(t)q(t, 0)] dt

=λJ(g, h, w, u)

+

∫ T

0

[
〈w, ṗ〉V ∗0 ;V0

+ ν〈w, pxx〉V ∗0 ;V0
+ (wu, px)H +

1

2
(u, ((r0 + 2η∗)p)x)H

]
dt

−
∫

Ω

p(T )w(T ) dx+

∫
Ω

p(0)w(0) dx

+

∫ T

0

[
〈u, q̇〉V ∗δ ;Vδ +

∫
Ω

δuxq̇x dx+
1

2

(
u2, qx

)
H

+ (w, (µq)x)H + (f, q)H

]
dt

− 〈u(T, ·), q(T, ·)− (δqx(T, ·))x〉V ∗δ ;Vδ − δ(L)u(T, L)qx(T, L)

+ δ(0)u(T, 0)qx(T, 0) + 〈u(0, ·)− (δux(0, ·))x, q(0, ·)〉V ∗δ ;Vδ

−
∫ T

0

[σ1(t)u(t, L)q(t, L)− h(t)q(t, L)− σ0(t)u(t, 0)q(t, 0) + g(t)q(t, 0)] dt

− 1

2

∫ T

0

(u2(t, L)q(t, L)− u2(t, 0)q(t, 0)) dt

=λJ(g, h, w, u)

+

∫ T

0

[
〈w, ṗ〉V ∗0 ;V0

+ ν〈w, pxx〉V ∗0 ;V0
+ (wu, px)H +

1

2
(u, ((r0 + 2η∗)p)x)H

]
dt

−
∫

Ω

p(T )w(T ) dx+

∫
Ω

p(0)w(0) dx

+

∫ T

0

[
〈u, q̇ − (δq̇x)x〉V ∗δ ;Vδ +

1

2

(
u2, qx

)
H

+ (w, (µq)x)H + (f, q)H

]
dt

− 〈u(T, ·), q(T, ·)− (δqx(T, ·))x〉V ∗δ ;Vδ

−
∫ T

0

[(σ1(t)q(t, L)− (δ(L)q̇x(t, L))u(t, L)− h(t)q(t, L)] dt

−
∫ T

0

[σ0(t)(q(t, 0)− (δ(0)q̇x(t, 0))u(t, 0)− g(t)q(t, 0)] dt

− 1

2

∫ T

0

(u2(t, L)q(t, L)− u2(t, 0)q(t, 0)) dt.

For each fixed (p, q) ∈
(
W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0)

)
× W 1,∞(0, T ;Vδ) the

Lagrangian is continuously Frechet-differentiable with respect to

(w, u, g, h) ∈
(
W0(0, T )∩L2(0, T ;H2(Ω)∩V0)

)
×W 1,∞(0, T ;Vδ)×L2(0, T )×L2(0, T ).
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Notice that, for a fixed t, we have u ∈ V ⊂ C(Ω) and w ∈ V0 ⊂ C(Ω), hence, the
inner products (wx(t)u(t) + w(t)ux(t), p(t))H and (u(t)ux(t), q(t))H are correctly
defined almost everywhere in [0, T ].

Further we make use of the following relation ηt = −1

2
r0ux that was introduced

in [3]. Substituting this one to (2), we have νηxx = (ηu)x = ηxu+ uxη.
Also, to simplify the deduction and in order to avoid the demanding of the

increased smoothness on solutions of the initial Boussinesq system (2)–(5), we use
(see [4] and [5]) elastic model for the hydrodynamic pressure

P (t, x) = Pext +
β

r2
0

η

instead of the inertial one

P = Pext +
β

r2
0

η + ρωh
∂2η

∂t2
= Pext +

β

r2
0

η − 1

2
ρωhr0uxt. (38)

Indeed, if we suppose the wall thickness h to be small enough, the last term in the
inertial model (38) appears negligible.

As a result, the cost functional J(g, h, w, u), where η = w + η∗, takes the form

J(g, h, w, u) =
1

2

∫
Ω

αΩ (u(T )− uΩ)
2
dx+

1

2

∫ T

0

∫
Ω

(
(w(t)u(t))x + ux(t)η∗

)2
dx dt

+
1

2

∫ T

0

∣∣∣∣∫
Ω

αQ

(
w(t) + η∗ − ηQ

)
dx

∣∣∣∣2 dt
+

1

2

∫ T

0

(
βg |g|2 + βh |h|2

)
dt. (39)

In order to formulate the conjugate system for an optimal solution (g0, h0, η0, u0),
where η0 = w0 + η∗, we have to find the Fréchet differentials Lwz and Luv, where

z ∈W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0) and v ∈W 1,∞(0, T ;Vδ)× L2(0, T ).

With that in mind we emphasize the following point. Since the elements

w + z ∈W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0) and u+ v ∈W 1,∞(0, T ;Vδ)× L2(0, T )

are some admissible solutions to OCP (39), (2)–(5), it follows that the increments
z and v satisfy the homogeneous initial and boundary conditions, i.e.{

z(0, ·) = 0 in Ω,

v(0, ·)− (δ(·)vx(0, ·))x = 0 in Ω,
(40)


z(·, 0) = z(·, L) = 0 in (0, T ),

δ(0)v̇x(·, 0) + σ0v(·, 0) = 0, in (0, T ),

δ(L)v̇x(·, L) + σ1v(·, L) = 0, in (0, T ),

δ(L)vx(0, L) = δ(0)vx(0, 0) = 0.

(41)

Taking into account the definition of the Fréchet derivative of nonlinear map-
pings, we get

J(g, h, w + z, u) = J(g, h, w, u) + Jwz +R0(w, z),
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where R0(w, z) stands for the remainder, which takes the form

R0(w, z) =
1

2

∫ T

0

∫
Ω

((zu)x)
2
dx dt+

∫ T

0

∣∣∣∣∫
Ω

aQz(t)

∣∣∣∣2 dt, (42)

and

Jwz = J(g, h, w + z, u)− J(g, h, w, u)−R0(w, z)

=
1

2

∫ T

0

∫
Ω

(
((w(t) + z(t))u(t))x + ux(t)η∗

)2
dx dt

− 1

2

∫ T

0

∫
Ω

(
(w(t)u(t))x + ux(t)η∗

)2
dx dt

+
1

2

∫ T

0

∣∣∣∣∫
Ω

αQ

(
w(t) + z(t) + η∗ − ηQ

)
dx

∣∣∣∣2 dt
− 1

2

∫ T

0

∣∣∣∣∫
Ω

αQ

(
w(t) + η∗ − ηQ

)
dx

∣∣∣∣2 dt
=

∫ T

0

∫
Ω

(
(w(t)u(t))x + ux(t)η∗

)(
(z(t)u(t))x

)
dx dt

+

∫ T

0

(∫
Ω

αQ

(
w(t) + η∗ − ηQ

)
dx

)(∫
Ω

αQz(t) dx

)
dt

=

∫ T

0

∫
Ω

(wxu+ uxw + uxη
∗)(uxz + zxu) dx dt

+ α2
Q

∫ T

0

∫
Ω

(∫
Ω

(
w(t) + η∗ − ηQ

)
dx

)
z(t) dx dt

=

∫ T

0

∫
Ω

[
(wxuxu+ (ux)2w + (ux)2η∗)− (wxu

2 + uxuw + uxuη
∗)x

]
z(t) dx dt

+ α2
Q

∫ T

0

∫
Ω

(∫
Ω

(
w(t) + η∗ − ηQ

)
dx

)
z(t) dx dt.

It is obviously follows from (42) that

|R0(w, x)|
‖z‖L2(0,T ;H2(Ω)∩V0)

→ 0 as ‖z‖L2(0,T ;H2(Ω)∩V0) → 0.

Hence, after some transformations, we have

Jwz =

∫ T

0

∫
Ω

(
− u [uxx(w + η∗) + 2uxwx + wxxu]

+ α2
Q

∫
Ω

(
w(t) + η∗ − ηQ

)
dx
)
z(t) dx dt. (43)

Treating similarly to the other derivative, we obtain

J(g, h, w, u+ v) = J(g, h, w, u) + Juv + R̃0(u, v),

where the remainder R̃0(u, v) takes the form

R̃0(u, v) =
1

2

∫
Ω

aΩv
2(T ) dx+

1

2

∫ T

0

∫
Ω

((wv)x + vxη
∗)

2
dx dt, (44)

|R̃0(u, v)|/‖v‖W 1,∞(0,T ;Vδ) → 0 as ‖v‖W 1,∞(0,T ;Vδ) → 0,



ON BOUNDARY OPTIMAL CONTROL PROBLEM FOR AN ARTERIAL SYSTEM 603

and

Juv = J(g, h, w, u+ v)− J(g, h, w, u)− R̃0(u, v)

=
1

2

∫
Ω

αΩ (u(T ) + v(T )− uΩ)
2
dx− 1

2

∫
Ω

αΩ (u(T )− uΩ)
2
dx

+
1

2

∫ T

0

∫
Ω

(
(w(t)(u(t) + v(t)))x + (ux(t) + vx(t))η∗

)2
dx dt

− 1

2

∫ T

0

∫
Ω

(
(w(t)u(t))x + ux(t)η∗

)2
dx dt

=

∫
Ω

αΩ(u(T )− uΩ)v(T ) dx

−
∫ T

0

∫
Ω

(w + η∗) [uxx(w + η∗) + 2uxwx + wxxu] dx dt

+

∫ T

0

η∗((w0(t, L)u0(t, L))x + u0
xη
∗)v(t, L) dt

−
∫ T

0

η∗((w0(t, 0)u0(t, 0))x + u0
x(t, 0)η∗)v(t, 0) dt. (45)

We are now in a position to identify the Fréchet derivatives Lw and Lv of the
Lagrangian. Following in a similar manner, we have

Lwz = λJwz +

∫ T

0

[
〈z, ṗ〉V ∗0 ;V0 + ν〈z, pxx〉V ∗0 ;V0 + (zu, px)H + (z, (µq)x)H

]
dt

− 〈z(T ), p(T )〉V ∗0 ;V0

and

Luv = λJuv +

∫ T

0

[
(wv, px)H +

1

2
(v, ((r0 + 2η∗)p)x)H

]
dt

+

∫ T

0

[
〈v, q̇ − δ(q̇x)x〉V ∗δ ;Vδ + (uv, qx)H

]
dt

− 〈v(T, ·), q(T, ·)− (δqx(T, ·))x〉V ∗δ ;Vδ

−
∫ T

0

[
(σ1(t)q(t, L)− δ(L)q̇x(t, L)) v(t, L)

− (σ0(t)q(t, 0)− δ(0)q̇x(t, 0)) v(t, 0)
]
dt

−
∫ T

0

(u(t, L)v(t, L)q(t, L)− u(t, 0)v(t, 0)q(t, 0)) dt

− δ(L)v(T, L)qx(T, L) + δ(0)v(T, 0)qx(T, 0).

As for the Fréchet derivatives Lg and Lh, direct calculations leads us to the
following representation:

Lgk(t) = L(w, u, g + k, h, p, q)− L(w, u, g, h, p, q)−R(g, k)

=

∫ T

0

βgg(t)k(t) dt−
∫ T

0

k(t)q(t, 0) dt−R(g, k),

Lhl(t) = L(w, u, g, h+ l, p, q)− L(w, u, g, h, p, q)−R(h, l)
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=

∫ T

0

βhh(t)l(t) dt+

∫ T

0

l(t)q(t, L) dt−R2(h, l),

where

R1(g, k) =
1

2

∫ T

0

βgk
2(t) dt, R2(h, l) =

1

2

∫ T

0

βhl
2(t) dt,

|R1(g, k)|/‖k‖L2(0,T ) → 0 as ‖k‖L2(0,T ) → 0,

and |R2(h, l)|/‖l‖L2(0,T ) → 0 as ‖l‖L2(0,T ) → 0.

Taking into account the calculations given above, we arrive at the following
representation of the first-order optimality conditions for OCP (2)–(5), (39).

Theorem 5.1. Let (g0, h0, η0, u0), where η0 = w0 + η∗, be an optimal solution to
the optimal control problem (1)–(5). Then there exists a unique pair

(p, q) ∈
[
W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0)

]
×W 1,∞(0, T ;Vδ)

such that the following system∫ T

0

[ 〈
ẇ0(t), ϕ

〉
V ∗0 ;V0

+ ((w0(t)u0(t))x, ϕ)H + ν(w0
x(t), ϕx)H

+
1

2

(
r0u

0
x(t) + 2η∗u0

x(t), ϕ
)
H

]
dt = 0, (46)∫ T

0

[ 〈
u̇0(t), ψ

〉
V ∗δ ;Vδ

+

∫
Ω

δu̇0
x(t)ψx dx

+ (u0(t)u0
x(t), ψ)H +

(
µ(t)w0

x(t), ψ
)
H

+ σ1(t)u0(t, L)ψ(L)

− σ0(t)u0(t, 0)ψ(0)
]
dt

=

∫ T

0

[
(f(t), ψ)H + h0(t)ψ(L)− g0(t)ψ(0)

]
dt, (47)

∫ T

0

[
〈ṗ(t), ϕ(t)〉V ∗0 ;V0

+ ν〈pxx(t), ϕ(t)〉V ∗0 ;V0
+
(
px(t)u0(t), ϕ(t)

)
H

+ ((µq(t))x, ϕ(t))H

]
dt− (p(T ), ϕ(T ))H

=

∫ T

0

∫
Ω

(
u0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
])
ϕ(t) dx dt

−
∫ T

0

∫
Ω

(
α2
Q

∫
Ω

(
η0(t)− ηQ(t)

)
dx

)
ϕ(t) dx dt, (48)

∫ T

0

[
〈q̇(t)− (δq̇x(t))x, ψ(t)〉V ∗δ ;Vδ + (qx(t)u0(t), ψ(t))H

]
dt

+

∫ T

0

[ (
px(t)η0(t), ψ(t))

)
H

+
1

2
((r0p(t))x, ψ(t))H

]
dt

−
∫ T

0

[(σ1(t) + u0(t, L))q(t, L)− δ(L)q̇x(t, L)]ψ(t, L) dt

+

∫ T

0

[(σ0(t) + u0(t, 0))q(t, 0)− δ(0)q̇x(t, 0)]ψ(t, 0) dt
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− 〈v(T, ·), q(T, ·)− (δqx(T, ·))x〉V ∗δ ;Vδ

− δ(L)qx(T, L)ψ(T, L) + δ(0)qx(T, 0))ψ(T, 0)

=

∫ T

0

∫
Ω

η0
[
u0
xx(t)η0(t)) + 2u0

x(t)η0
x(t) + η0

xx(t)u0(t)
]
ψ(t) dx dt

−
∫

Ω

aΩ(u0(T )− uΩ)ψ(T ) dx−
∫ T

0

η∗(η0
x(t, L)u0(t, L)

+ η∗u0
x(t, L))ψ(t, L) dt+

∫ T

0

η∗(η0
x(t, 0)u0(t, 0) + η∗u0

x(t, 0))ψ(t, 0) dt, (49)∫ T

0

(βgg
0(t)− q(t, 0))(g(t)− g0(t)) dt ≥ 0, ∀ g ∈ Gad, (50)∫ T

0

(βhh
0(t) + q(t, L))(h(t)− h0(t)) dt ≥ 0 ∀h ∈ Had, (51)

η0(t) = w0(t) + η∗, (52)

δ(L)u0
x(0, L) = 0, δ(0)u0

x(0, 0) = 0, δ(L)qx(T, L) = 0, δ(0)qx(T, 0) = 0, (53)

w0(0) = η0
0 − η∗, p(T ) = 0, p(·, 0) = p(·, L) = 0, (54)

u0(0)− (δu0
x(0))x = u0, q(T )− (δqx(T ))x = λaΩ(u0(T )− uΩ) (55)

holds true for all

ϕ ∈W0(0, T ) ∩ L2(0, T ;H2(Ω) ∩ V0), ψ ∈W 1,∞(0, T ;Vδ), ϕ ∈ V0, ψ ∈ Vδ,

and a.e. t ∈ [0, T ].

Proof. Since the derived optimality conditions (46)–(55) are the direct consequence
of the Lagrange principle, we focus on the solvability of the variational problems
(48)–(49) for the adjoint variables p and q. To do so, we represent the system
(48)–(49) as the corresponding equalities in the sense of distributions, namely,

pt + νpxx + pxu
0 + (µq)x

= λu0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
− λ(αQ)2

∫
Ω

(
η0 − ηQ

)
dx, (56)

[q − (δqx)x]t + qxu
0 + pxη

0 +
1

2
(r0p)x = λη0

[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
, (57)

δ(L)q̇x(·, L)− (σ1 + u0(·, L))q(·, L) = −λη∗(η0
x(·, L)u0(·, L) + u0

x(·, L)η∗), (58)

δ(0)q̇x(·, 0)− (σ0 + u0(·, 0))q(·, 0) = −λη∗(η0
x(·, 0)u0(·, 0) + u0

x(·, 0)η∗), (59)

q(T )− (δqx(T ))x = λaΩ(u0(T )− uΩ), (60)

δ(L)qx(T, L) = δ(0)qx(T, 0) = 0, (61)

p(T ) = 0, p(·, 0) = p(·, L) = 0. (62)

In the operator presentation, the system (56)–(62) takes the form (see [11]):

(A(t)p)
′
t +B(t)p = F (t), A(T )p(T ) = b,

where the operators

A(t), B(t) : L2(0, T ;V0)× L2(0, T ;Vδ)→
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2
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are defined in (36)–(37), and

b = (0, λaΩ(u0(T )− uΩ), 0, 0) ∈ V ∗0 × V ∗0 × R× R,

F (t) = (f1, f2, φ1, φ2)t ∈
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2
,

f1(t) = λu0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
− λ(αQ)2

∫
Ω

(
η0 − ηQ

)
dx,

f2(t) = λη0
[
u0
xxη

0 + 2u0
xη

0
x + η0

xxu
0
]
,

φ1(t) = −λη∗(η0
x(t, L)u0(t, L) + u0

x(t, L)η∗),

φ2(t) = λη∗(η0
x(t, 0)u0(t, 0) + u0

x(t, 0)η∗).

As a result, the existence of a unique pair (p(t), q(t)) satisfying the system (48)–
(51) is a mere consequence of Theorem 5.1. Moreover, since the Cauchy problem
has a solution for any

F ∈
[
L2(0, T ;V ∗0 )

]2 × [L2(0, T )
]2

and b ∈ V ∗0 × V ∗0 × R× R,

the Lagrange multiplier λ in the definition of the Lagrange functional

L = L(w, u, g, h, λ, p, q)

can be taken equal to 1.
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[11] H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordif-
ferentialgleichungen, Akademie-Verlag, Berlin, 1974.

[12] F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sci-
ences, Springer-Verlag, New York, 2002.

[13] M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical
Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Rus-
sian).

[14] A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985.

[15] F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hy-
pertension: Theoretical insights from a computational model-based study, ASME Journal of
Biomechanical Engineering, 140 (2018), 031006.

http://www.ams.org/mathscinet-getitem?mr=MR0450957&return=pdf
http://dx.doi.org/10.11159/jffhmt.2016.004
http://dx.doi.org/10.11159/jffhmt.2016.004
http://www.ams.org/mathscinet-getitem?mr=MR3603234&return=pdf
http://dx.doi.org/10.3934/mbe.2017035
http://dx.doi.org/10.3934/mbe.2017035
http://dx.doi.org/10.1007/s00028-018-0460-4
http://dx.doi.org/10.1007/s00028-018-0460-4
http://www.ams.org/mathscinet-getitem?mr=MR3268170&return=pdf
http://dx.doi.org/10.3934/nhm.2014.9.501
http://dx.doi.org/10.3934/nhm.2014.9.501
http://www.ams.org/mathscinet-getitem?mr=MR3541528&return=pdf
http://dx.doi.org/10.3934/nhm.2016003
http://dx.doi.org/10.3934/nhm.2016003
http://www.ams.org/mathscinet-getitem?mr=MR1156075&return=pdf
http://dx.doi.org/10.1007/978-3-642-58090-1
http://dx.doi.org/10.1007/978-3-642-58090-1
http://dx.doi.org/10.1080/10255840600857767
http://dx.doi.org/10.1080/10255840600857767
http://www.ams.org/mathscinet-getitem?mr=MR0636412&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1859348&return=pdf
http://dx.doi.org/10.1007/978-0-387-21571-6
http://dx.doi.org/10.1007/978-0-387-21571-6
http://www.ams.org/mathscinet-getitem?mr=MR802206&return=pdf
http://dx.doi.org/10.1115/1.4038430
http://dx.doi.org/10.1115/1.4038430


ON BOUNDARY OPTIMAL CONTROL PROBLEM FOR AN ARTERIAL SYSTEM 607

[16] D. Mitsotakis, D. Dutykh and L. Qian, Asymptotic nonlinear and dispersive pulsatile flow in
elastic vessels with cylindrical symmetry, Computers & Mathematics with Applications, 75

(2018), 4022–4027.

[17] M. S. Olufsen, J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz and V. Novak, Blood
pressure and blood flow variation during postural change from sitting to standing: model

development and validation, J. Appl. Physiol , 99 (2005), 1523–1537.
[18] G. Pontrelli and E. Rossoni, Numerical modeling of the pressure wave propagation in the

arterial flow, International Journal for Numerical Methods in Fluids, 43 (2003), 651–671.

[19] A. Quarteroni, A. Manzoni and C. Vergara, The cardiovascular system: Mathematical mod-
elling, numerical algorithms and clinical applications, Acta Numerica, 16 (2017), 365–590.

[20] P. Reymond, F. Merenda, F. Perren, D. Rafenacht and N. Stergiopulos, Validation of a one-

dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol., 297 (2009),
H208–H222.

[21] S. J. Sherwin, L. Formaggia, J. Peiro and V. Franke, Computational modeling of 1D blood flow

with variable mechanical properties and its application to the simulation of wave propagation
in the human arterial system, Internat. J. for Numerical Methods in Fluids, 43 (2003), 673–

700.

Received December 2017; 1st revision August 2018; 2nd revision August 2018.

E-mail address: cdapice@unisa.it

E-mail address: kupenko.olga@gmail.com

E-mail address: rmanzo@unisa.it

http://www.ams.org/mathscinet-getitem?mr=MR3797041&return=pdf
http://dx.doi.org/10.1016/j.camwa.2018.03.011
http://dx.doi.org/10.1016/j.camwa.2018.03.011
http://dx.doi.org/10.1152/japplphysiol.00177.2005
http://dx.doi.org/10.1152/japplphysiol.00177.2005
http://dx.doi.org/10.1152/japplphysiol.00177.2005
http://www.ams.org/mathscinet-getitem?mr=MR2032021&return=pdf
http://dx.doi.org/10.1002/fld.494
http://dx.doi.org/10.1002/fld.494
http://www.ams.org/mathscinet-getitem?mr=MR3653854&return=pdf
http://dx.doi.org/10.1017/S0962492917000046
http://dx.doi.org/10.1017/S0962492917000046
http://dx.doi.org/10.1152/ajpheart.00037.2009
http://dx.doi.org/10.1152/ajpheart.00037.2009
http://www.ams.org/mathscinet-getitem?mr=MR2032856&return=pdf
http://dx.doi.org/10.1002/fld.543
http://dx.doi.org/10.1002/fld.543
http://dx.doi.org/10.1002/fld.543
mailto:cdapice@unisa.it
mailto:kupenko.olga@gmail.com
mailto:rmanzo@unisa.it

	1. Introduction
	2. Preliminaries
	3. On solvability of optimal control problem (1)–(5)
	4. Auxiliary results
	5. First-order optimality conditions
	REFERENCES

