Caputo fractional derivative solves the fractional initial value problem in Riemann-Liouville (R-L) fractional calculus. The definition of a Caputo-type derivative is in the same form as the definition of an integral differential equation, including the restriction of the value of the integral derivative to the value of the unknown function at the endpoint $ t = a $. Therefore, this paper introduced the Caputo fractional derivative (CFD) to establish the transmission model of leptospirosis. First, to ensure that the model had a particular significance, we proved the dynamic properties of the model, such as nonnegative, boundedness, and stability of the equilibrium point. Second, according to the existence mode and genetic characteristics of pathogenic bacteria of leptospirosis, and from the perspective of score optimal control, we put forward measures such as wearing protective clothing, hospitalization, and cleaning the environment to prevent and control the spread of the disease. According to the proposed control measures, a control model of leptospirosis was established, and a forward-backward scanning algorithm (FB algorithm) was introduced to optimize the control function. Three different disease control strategies were proposed. Finally, the numerical simulation of different fractional orders used the fde12 (based on Adams–Bashforth–Moulton scheme) solver. The three optimized strategies, A, B, and C, were compared and analyzed. The results showed that the optimized control strategy could shorten the transmission time of the disease by about 80 days. Therefore, the above methods contributed to the study of leptospirosis and the World Health Organization.
Citation: Ling Zhang, Xuewen Tan, Jia Li, Fan Yang. Dynamic analysis and optimal control of leptospirosis based on Caputo fractional derivative[J]. Networks and Heterogeneous Media, 2024, 19(3): 1262-1285. doi: 10.3934/nhm.2024054
Caputo fractional derivative solves the fractional initial value problem in Riemann-Liouville (R-L) fractional calculus. The definition of a Caputo-type derivative is in the same form as the definition of an integral differential equation, including the restriction of the value of the integral derivative to the value of the unknown function at the endpoint $ t = a $. Therefore, this paper introduced the Caputo fractional derivative (CFD) to establish the transmission model of leptospirosis. First, to ensure that the model had a particular significance, we proved the dynamic properties of the model, such as nonnegative, boundedness, and stability of the equilibrium point. Second, according to the existence mode and genetic characteristics of pathogenic bacteria of leptospirosis, and from the perspective of score optimal control, we put forward measures such as wearing protective clothing, hospitalization, and cleaning the environment to prevent and control the spread of the disease. According to the proposed control measures, a control model of leptospirosis was established, and a forward-backward scanning algorithm (FB algorithm) was introduced to optimize the control function. Three different disease control strategies were proposed. Finally, the numerical simulation of different fractional orders used the fde12 (based on Adams–Bashforth–Moulton scheme) solver. The three optimized strategies, A, B, and C, were compared and analyzed. The results showed that the optimized control strategy could shorten the transmission time of the disease by about 80 days. Therefore, the above methods contributed to the study of leptospirosis and the World Health Organization.
[1] | Report of the second meeting of the leptospirosis burden epidemiology reference group, World Health Organization, 2011. |
[2] | F. Costa, J. E. Hagan, J. Calcagno, M. Kane, P. Torgerson, M. S. Martinez-Silveira, Global morbidity and mortality of leptospirosis: A systematic review, PLoS Negl.Trop. Dis., 9 (2015), e0003898. https://doi.org/10.1371/journal.pntd.0003898 doi: 10.1371/journal.pntd.0003898 |
[3] | K. V. Evangelista, J. Coburn, Leptospira as an emerging pathogen: A review of its biology, pathogenesis and host immune responses, Future microbiol., 5 (2010), 1413–1425. https://doi.org/10.2217/fmb.10.102 doi: 10.2217/fmb.10.102 |
[4] | K. B. Karpagam, B. Ganesh, Leptospirosis: A neglected tropical zoonotic infection of public health importance–an updated review, Eur. J. Clin. Microbiol. Infect. Dis., 39 (2020), 835–846. https://doi.org/10.1007/s10096-019-03797-4 doi: 10.1007/s10096-019-03797-4 |
[5] | D. A. Haake, P. N. Levett, Leptospirosis in humans, Leptospira and Leptospirosis, Springer-Verlag GmbH, (2015), 65–97. |
[6] | L. Biscornet, J. de Comarmond, J. Bibi, P. Mavingui, K. Dellagi, P. Tortosa, et al., An observational study of human leptospirosis in Seychelles, Am. J. Trop. Med. Hyg., 103 (2020), 999–1008. https://doi.org/10.4269/ajtmh.19-0228 doi: 10.4269/ajtmh.19-0228 |
[7] | E. Bierque, R. Thibeaux, D. Girault, M. E. Soupé-Gilbert, C. Goarant, A systematic review of Leptospira in water and soil environments, PloS one, 15 (2020), e0227055. https://doi.org/10.1371/journal.pone.0227055 doi: 10.1371/journal.pone.0227055 |
[8] | G. López-Robles, F. N. Córdova-Robles, E. Sandoval-Petris, M. Montalvo-Corral, Leptospirosis at human-animal-environment interfaces in Latin-America: Drivers, prevention, and control measures, Biotecnia, 23 (2021), 89–100. https://doi.org/10.18633/biotecnia.v23i3.1442 doi: 10.18633/biotecnia.v23i3.1442 |
[9] | M. H. A. A. Rahman, S. M. Hairon, R. A. Hamat, T. Z. M. T. Jamaluddin, M. N. Shafei, N. Idris, et al., Leptospirosis health intervention module effect on knowledge, attitude, belief, and practice among wet market workers in northeastern Malaysia: An intervention study, Int. J. Environ. Res. Public Health, 15 (2018), 1396. https://doi.org/10.3390/ijerph15071396 doi: 10.3390/ijerph15071396 |
[10] | J. E. Sykes, D. A. Haake, C. D. Gamage, W. Z. Mills, J. E. Nally, A global one health perspective on leptospirosis in humans and animals, J. Am. Vet. Med. Assoc., 260 (2022), 1589–1596. https://doi.org/10.2460/javma.22.06.0258 doi: 10.2460/javma.22.06.0258 |
[11] | M. A. Mwachui, L. Crump, R. Hartskeerl, J. Zinsstag, J. Hattendorf, Environmental and behavioural determinants of leptospirosis transmission: A systematic review, PLoS Negl.Trop. Dis., 9 (2015), e0003843. https://doi.org/10.1371/journal.pntd.0003843 doi: 10.1371/journal.pntd.0003843 |
[12] | Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283 |
[13] | Y. Guo, T. Li, Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China, J. Math. Anal. Appl., 68 (2022), 2641–2666. https://doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z |
[14] | Z. Zhang, Y. Wang, J. Zhang, Z. Ai, F. Liu, Novel stability results of multivariable fractional-order system with time delay, Chaos, Solitons Fractals, 157 (2022), 111943. https://doi.org/10.1016/j.chaos.2022.111943 doi: 10.1016/j.chaos.2022.111943 |
[15] | N. H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos, Solitons Fractals, 140 (2020), 110107. https://doi.org/10.1016/j.chaos.2020.110107 doi: 10.1016/j.chaos.2020.110107 |
[16] | R. Almeida, A. M. C. B. da Cruz, N. Martins, M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivativer, nt. J. Dyn. Control, 7 (2019), 776–784. https://doi.org/10.1007/s40435-018-0492-1 doi: 10.1007/s40435-018-0492-1 |
[17] | K. Mukdasai, Z. Sabir, M. A. Z. Raja, R. Sadat, M. R. Ali, P. Singkibud, A numerical simulation of the fractional order Leptospirosis model using the supervise neural network, Alexandria Eng. J., 61 (2022), 12431–12441. https://doi.org/10.1016/j.aej.2022.06.013 doi: 10.1016/j.aej.2022.06.013 |
[18] | S. Ullah, M. A. Khan, Modeling and analysis of fractional leptospirosis model using Atangana–Baleanu derivative, Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering, Springer Cham, (2019), 49–67. https://doi.org/10.1007/978-3-030-11662-0_4 |
[19] | K. O. Okosun, M. Mukamuri, D. O. Makinde, Global stability analysis and control of leptospirosis, Open Math., 14 (2016), 567–585. https://doi.org/10.1515/math-2016-0053 doi: 10.1515/math-2016-0053 |
[20] | D. Baca-Carrasco, D. Olmos, I. Barradas, A mathematical model for human and animal leptospirosis, J. Biol. Syst., 23 (2015), S55–S65. https://doi.org/10.1142/S0218339015400057 doi: 10.1142/S0218339015400057 |
[21] | M. A. Khan, S. F. Saddiq, S. Islam, I. Khan, S. Shafie, Dynamic behavior of leptospirosis disease with saturated incidence rate, Int. J. Appl. Comput. Math., 2 (2016), 435–452. https://doi.org/10.1007/s40819-015-0102-2 doi: 10.1007/s40819-015-0102-2 |
[22] | F. K. Alalhareth, U. Atta, A. H. Ali, A. Ahmad, M. H. Alharbi, Analysis of leptospirosis transmission dynamics with environmental effects and bifurcation using fractional-order derivative, Alexandria Eng. J., 80 (2023), 372–382. https://doi.org/10.1016/j.aej.2023.08.063 doi: 10.1016/j.aej.2023.08.063 |
[23] | H. D. Ngoma, P. R. Kiogora, I. Chepkwony, A fractional order model of leptospirosis transmission dynamics with environmental compartment, Global J. Pure Appl. Math., 18 (2022), 81–110. |
[24] | H. Qu, S. Saifullah, J. Khan, A. Khan, M. Ur Rahman, G. Zheng, Dynamics of leptospirosis disease in context of piecewise classical-global and classical-fractional operators, Fractals, 30 (2022), 2240216. https://doi.org/10.1142/S0218348X22402162 doi: 10.1142/S0218348X22402162 |
[25] | F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model, IEEE Trans. Neural Networks, 20 (2008), 61–80. https://doi.org/10.1109/TNN.2008.2005605 doi: 10.1109/TNN.2008.2005605 |
[26] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036 |
[27] | C. Gallicchio, A. Micheli, Graph echo state networks, in The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, Barcelona, Spain, (2010), 1–8. https://doi.org/10.1109/IJCNN.2010.5596796 |
[28] | Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102 |
[29] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040 |
[30] | L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 993–1001. https://doi.org/10.1109/34.58871 doi: 10.1109/34.58871 |
[31] | R. E. Schapire, The strength of weak learnability, Mach. Learn., 5 (1990), 197–227. https://doi.org/10.1007/BF00116037 doi: 10.1007/BF00116037 |
[32] | Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-Line learning and an application to boosting, J. Comput. Syst. Sci., 55 (1997), 119–139. https://doi.org/10.1006/jcss.1997.1504 doi: 10.1006/jcss.1997.1504 |
[33] | J. H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat., 29 (2001), 1189–1232. https://doi.org/10.1214/aos/1013203451 doi: 10.1214/aos/1013203451 |
[34] | L. Breiman, Bagging predictors, Mach. Learn., 24 (1996), 123–140. https://doi.org/10.1023/A:1018054314350 doi: 10.1023/A:1018054314350 |
[35] | A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. M. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos, Solitons Fractals, 140 (2020), 110224. https://doi.org/10.1016/j.chaos.2020.110224 doi: 10.1016/j.chaos.2020.110224 |
[36] | L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324 |
[37] | P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn., 63 (2006), 3–42. https://doi.org/10.1007/s10994-006-6226-1 doi: 10.1007/s10994-006-6226-1 |
[38] | C. Cortes, V. Vapnik, Support-vector networks, Mach. learn., 20 (1995), 273–297. https://doi.org/10.1023/A:1022627411411 doi: 10.1023/A:1022627411411 |
[39] | L. Wang, T. Wang, X. Hu, Logistic regression region weighting for weakly supervised object localization, IEEE Access, 7 (2019), 118411–118421. https://doi.org/10.1109/ACCESS.2019.2935011 doi: 10.1109/ACCESS.2019.2935011 |
[40] | K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be |
[41] | R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281–2290. https://doi.org/10.1080/00207160802624331 doi: 10.1080/00207160802624331 |
[42] | M. McAsey, L. Mou, W. Han, Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53 (2012), 207–226. https://doi.org/10.1007/s10589-011-9454-7 doi: 10.1007/s10589-011-9454-7 |
[43] | Y. Guo, T. Li, Dynamics and optimal control of an online game addiction model with considering family education, AIMS Math., 7 (2022), 3745–3770. https://doi.org/10.3934/math.2022208 doi: 10.3934/math.2022208 |
[44] | H. D. Ngoma, P. R. Kiogora, I. Chepkwony, A fractional order model of leptospirosis transmission dynamics with environmental compartment, Global J. Pure Appl. Math., 18 (2022), 81–110. |
[45] | M. El-Shahed, Fractional order model for the spread of leptospirosis, Int. J. Math. Anal., 8 (2014), 2651–2667. https://doi.org/10.12988/ijma.2014.410312 doi: 10.12988/ijma.2014.410312 |