Research article

Dynamic analysis of the M/G/1 queueing system with multiple phases of operation

  • Received: 06 September 2024 Revised: 21 October 2024 Accepted: 28 October 2024 Published: 31 October 2024
  • In this paper, we considered the M/G/1 queueing system with multiple phases of operation. First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system. Second, by calculating the spectral distribution of the system operator, we proved that the solution converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the system's corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some numerical analysis.

    Citation: Nurehemaiti Yiming. Dynamic analysis of the M/G/1 queueing system with multiple phases of operation[J]. Networks and Heterogeneous Media, 2024, 19(3): 1231-1261. doi: 10.3934/nhm.2024053

    Related Papers:

  • In this paper, we considered the M/G/1 queueing system with multiple phases of operation. First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system. Second, by calculating the spectral distribution of the system operator, we proved that the solution converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the system's corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some numerical analysis.



    加载中


    [1] R. G. Askin, G. J. Hanumantha, Queueing network models for analysis of nonstationary manufacturing systems, Int. J. Prod. Res., 56 (2018), 22–42. https://doi.org/10.1080/00207543.2017.1398432 doi: 10.1080/00207543.2017.1398432
    [2] R. Ibrahim, Managing queueing systems where capacity is random and customers are impatient, Prod. Oper. Manag., 27 (2018), 234–250. https://doi.org/10.1111/poms.12796 doi: 10.1111/poms.12796
    [3] J. J. Li, L. W. Liu, T. Jiang, Analysis of an M/G/1 queue with vacation and multiple phases of operation, Math. Methods Oper. Res., 87 (2018), 51–72. https://doi.org/10.1007/s00186-017-0606-0 doi: 10.1007/s00186-017-0606-0
    [4] N. Paz, U. Yechiali, An M/M/1 queue in random environment with disasters, Asia-Pac. J. Oper. Res., 31 (2014), 1450016. https://doi.org/10.1142/S021759591450016X doi: 10.1142/S021759591450016X
    [5] D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge Philos. Soc., 51 (1955), 433–441. https://doi.org/10.1017/S0305004100030437 doi: 10.1017/S0305004100030437
    [6] G. Gupur, X. Z. Li, G. T. Zhu, Functional Analysis Method in Queueing Theory, Research Information Limited, Herdfortshire, 2001.
    [7] G. Gupur, Advances in queueing models' research, Acta Anal. Funct. Appl., 13 (2011), 225–245.
    [8] G. Gupur, On eigenvalues of the generator of a $C_0-$semigroup appearing in queueing theory, Abstr. Appl. Anal., 2014 (2014), 896342. https://doi.org/10.1155/2014/896342 doi: 10.1155/2014/896342
    [9] E. Kasim, G. Gupur, Other eigenvalues of the M/M/1 operator, Acta Anal. Funct. Appl., 13 (2011), 45–53.
    [10] L. Zhang, G. Gupur, Another eigenvalue of the M/M/1 operator, Acta Anal. Funct. Appl., 10 (2008), 81–91.
    [11] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. https://doi.org/10.1007/b97696
    [12] G. Gupur, Functional Analysis Methods for Reliability Models, Springer-Verlag, Basel, 2011. https://doi.org/10.1007/978-3-0348-0101-0
    [13] J. L. D. Palencia, Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in $\mathbb{R}^N$, Electron. J. Differ. Equations, 2023 (2023), 1–17. https://doi.org/10.58997/ejde.2023.04 doi: 10.58997/ejde.2023.04
    [14] J. L. D. Palencia, Semigroup theory and analysis of solutions for a higher order non-Lipschitz problem with advection $\mathbb{R}^N$, Math. Methods Appl. Sci., (2024), 1–17. https://doi.org/10.1002/mma.9902
    [15] J. L. D. Palencia, S. U. Rahman, A. N. Redondo, Heterogeneous diffusion and nonlinear advection in a one-dimensional Fisher-KPP problem, Entropy, 24 (2022), 915. https://doi.org/10.3390/e24070915 doi: 10.3390/e24070915
    [16] G. Avalos, P. G. Geredeli, B. Muha, Wellposedness, spectral analysis and asymptotic stability of a multilayered heat-wave-wave system, J. Differ. Equations, 269 (2020), 7129–7156. https://doi.org/10.1016/j.jde.2020.05.035 doi: 10.1016/j.jde.2020.05.035
    [17] A. Drogoul, R. Veltz, Exponential stability of the stationary distribution of a mean field of spiking neural network, J. Differ. Equations, 270 (2021), 809–842. https://doi.org/10.1016/j.jde.2020.08.001 doi: 10.1016/j.jde.2020.08.001
    [18] N. Yiming, G. Gupur, Well-posedness and asymptotic behavior of the time-dependent solution of an M/G/1 queueing model, J. Pseudo-Differ. Oper. Appl., 10 (2019), 49–92. https://doi.org/10.1007/s11868-018-0256-x doi: 10.1007/s11868-018-0256-x
    [19] G. Greiner, Perturbing the boundary conditions of a generator, Houst. J. Math., 13 (1987), 213–229.
    [20] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014. https://doi.org/10.1007/978-3-319-04621-1
    [21] H. O. Fattorini, The Cauchy Problem, Cambridge University Press, 1983.
    [22] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, Oxford, 2003.
    [23] A. Haji, A. Radl, Asymptotic stability of the solution of the M/$M^B$/1 queueing model, Comput. Math. Appl., 53 (2007), 1411–1420. https://doi.org/10.1016/j.camwa.2006.12.005 doi: 10.1016/j.camwa.2006.12.005
    [24] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, et al., One-Parameter Semigroups of Positive Operators, Springer, Berlin, 1986.
    [25] N. Yiming, Spectral distribution and semigroup properties of a queueing model with exceptional service time, Networks Heterogen. Media, 19 (2024), 800–821. https://doi.org/10.3934/nhm.2024036 doi: 10.3934/nhm.2024036
    [26] A. Dudin, S. Dudin, R. Manzo, L. Rarit$\grave{a}$, Analysis of multi-server priority queueing system with hysteresis strategy of server reservation and retrials, Mathematics, 10 (2022), 3747. https://doi.org/10.3390/math10203747 doi: 10.3390/math10203747
    [27] A. Dudin, S. Dudin, R. Manzo, L. Rarit$\grave{a}$, Queueing system with batch arrival of heterogeneous orders, flexible limited processor sharing and dynamical change of priorities, AIMS Math., 9 (2024), 12144–12169. https://doi.org/10.3934/math.2024593 doi: 10.3934/math.2024593
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(150) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog