In this paper, we considered the M/G/1 queueing system with multiple phases of operation. First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system. Second, by calculating the spectral distribution of the system operator, we proved that the solution converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the system's corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some numerical analysis.
Citation: Nurehemaiti Yiming. Dynamic analysis of the M/G/1 queueing system with multiple phases of operation[J]. Networks and Heterogeneous Media, 2024, 19(3): 1231-1261. doi: 10.3934/nhm.2024053
In this paper, we considered the M/G/1 queueing system with multiple phases of operation. First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system. Second, by calculating the spectral distribution of the system operator, we proved that the solution converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the system's corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some numerical analysis.
[1] | R. G. Askin, G. J. Hanumantha, Queueing network models for analysis of nonstationary manufacturing systems, Int. J. Prod. Res., 56 (2018), 22–42. https://doi.org/10.1080/00207543.2017.1398432 doi: 10.1080/00207543.2017.1398432 |
[2] | R. Ibrahim, Managing queueing systems where capacity is random and customers are impatient, Prod. Oper. Manag., 27 (2018), 234–250. https://doi.org/10.1111/poms.12796 doi: 10.1111/poms.12796 |
[3] | J. J. Li, L. W. Liu, T. Jiang, Analysis of an M/G/1 queue with vacation and multiple phases of operation, Math. Methods Oper. Res., 87 (2018), 51–72. https://doi.org/10.1007/s00186-017-0606-0 doi: 10.1007/s00186-017-0606-0 |
[4] | N. Paz, U. Yechiali, An M/M/1 queue in random environment with disasters, Asia-Pac. J. Oper. Res., 31 (2014), 1450016. https://doi.org/10.1142/S021759591450016X doi: 10.1142/S021759591450016X |
[5] | D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge Philos. Soc., 51 (1955), 433–441. https://doi.org/10.1017/S0305004100030437 doi: 10.1017/S0305004100030437 |
[6] | G. Gupur, X. Z. Li, G. T. Zhu, Functional Analysis Method in Queueing Theory, Research Information Limited, Herdfortshire, 2001. |
[7] | G. Gupur, Advances in queueing models' research, Acta Anal. Funct. Appl., 13 (2011), 225–245. |
[8] | G. Gupur, On eigenvalues of the generator of a $C_0-$semigroup appearing in queueing theory, Abstr. Appl. Anal., 2014 (2014), 896342. https://doi.org/10.1155/2014/896342 doi: 10.1155/2014/896342 |
[9] | E. Kasim, G. Gupur, Other eigenvalues of the M/M/1 operator, Acta Anal. Funct. Appl., 13 (2011), 45–53. |
[10] | L. Zhang, G. Gupur, Another eigenvalue of the M/M/1 operator, Acta Anal. Funct. Appl., 10 (2008), 81–91. |
[11] | K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. https://doi.org/10.1007/b97696 |
[12] | G. Gupur, Functional Analysis Methods for Reliability Models, Springer-Verlag, Basel, 2011. https://doi.org/10.1007/978-3-0348-0101-0 |
[13] | J. L. D. Palencia, Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in $\mathbb{R}^N$, Electron. J. Differ. Equations, 2023 (2023), 1–17. https://doi.org/10.58997/ejde.2023.04 doi: 10.58997/ejde.2023.04 |
[14] | J. L. D. Palencia, Semigroup theory and analysis of solutions for a higher order non-Lipschitz problem with advection $\mathbb{R}^N$, Math. Methods Appl. Sci., (2024), 1–17. https://doi.org/10.1002/mma.9902 |
[15] | J. L. D. Palencia, S. U. Rahman, A. N. Redondo, Heterogeneous diffusion and nonlinear advection in a one-dimensional Fisher-KPP problem, Entropy, 24 (2022), 915. https://doi.org/10.3390/e24070915 doi: 10.3390/e24070915 |
[16] | G. Avalos, P. G. Geredeli, B. Muha, Wellposedness, spectral analysis and asymptotic stability of a multilayered heat-wave-wave system, J. Differ. Equations, 269 (2020), 7129–7156. https://doi.org/10.1016/j.jde.2020.05.035 doi: 10.1016/j.jde.2020.05.035 |
[17] | A. Drogoul, R. Veltz, Exponential stability of the stationary distribution of a mean field of spiking neural network, J. Differ. Equations, 270 (2021), 809–842. https://doi.org/10.1016/j.jde.2020.08.001 doi: 10.1016/j.jde.2020.08.001 |
[18] | N. Yiming, G. Gupur, Well-posedness and asymptotic behavior of the time-dependent solution of an M/G/1 queueing model, J. Pseudo-Differ. Oper. Appl., 10 (2019), 49–92. https://doi.org/10.1007/s11868-018-0256-x doi: 10.1007/s11868-018-0256-x |
[19] | G. Greiner, Perturbing the boundary conditions of a generator, Houst. J. Math., 13 (1987), 213–229. |
[20] | D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014. https://doi.org/10.1007/978-3-319-04621-1 |
[21] | H. O. Fattorini, The Cauchy Problem, Cambridge University Press, 1983. |
[22] | R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, Oxford, 2003. |
[23] | A. Haji, A. Radl, Asymptotic stability of the solution of the M/$M^B$/1 queueing model, Comput. Math. Appl., 53 (2007), 1411–1420. https://doi.org/10.1016/j.camwa.2006.12.005 doi: 10.1016/j.camwa.2006.12.005 |
[24] | W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, et al., One-Parameter Semigroups of Positive Operators, Springer, Berlin, 1986. |
[25] | N. Yiming, Spectral distribution and semigroup properties of a queueing model with exceptional service time, Networks Heterogen. Media, 19 (2024), 800–821. https://doi.org/10.3934/nhm.2024036 doi: 10.3934/nhm.2024036 |
[26] | A. Dudin, S. Dudin, R. Manzo, L. Rarit$\grave{a}$, Analysis of multi-server priority queueing system with hysteresis strategy of server reservation and retrials, Mathematics, 10 (2022), 3747. https://doi.org/10.3390/math10203747 doi: 10.3390/math10203747 |
[27] | A. Dudin, S. Dudin, R. Manzo, L. Rarit$\grave{a}$, Queueing system with batch arrival of heterogeneous orders, flexible limited processor sharing and dynamical change of priorities, AIMS Math., 9 (2024), 12144–12169. https://doi.org/10.3934/math.2024593 doi: 10.3934/math.2024593 |