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Abstract: In this paper, we considered the M/G/1 queueing system with multiple phases of operation.
First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system.
Second, by calculating the spectral distribution of the system operator, we proved that the solution
converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the
system’s corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic
indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some
numerical analysis.

Keywords: queueing system with multiple phases of operation; Cy—semigroup; operator spectrum;
asymptotic behavior; time-evolving queue length

1. Introduction

Queueing systems with multiple phases of operation are very useful in manufacturing systems,
transportation systems, financial systems, etc.; see [1-4]. For example, in automobile manufacturing,
raw materials first enter the stamping workshop for stamping and forming. Continuing with the welding
assembly in the welding workshop is the second stage, then carry out surface treatment such as painting,
is the third stage. Finally, the final assembly and quality inspection are carried out. In the airport
boarding process, passengers first queue up at the check-in counter to complete check-in procedures,
including checking in luggage. Then, queue up through the security checkpoint for security checks, is
the second stage. Finally, they queue up at the boarding gate to wait for boarding. In hospital medical
systems, patients first queue up at the registration counter to register. Then, the second stage is to go
to the waiting area of the corresponding department to queue up for the doctor’s diagnosis. If further
examinations are needed, such as blood tests, X-rays, etc., one needs to queue outside the examination
department to wait for the examination, which is the third stage. Finally, they take the examination
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results and return to the doctor for diagnosis or treatment, such as prescribing medication, intravenous
infusion, etc.

In this paper, we consider the M/G/1 queueing system with multiple phases of operation, where
M means that customer arrival follows a Poisson process, G represents the service rate of the server
follows a general distribution, 1 indicates the number of servers in the system. Therefore, the M/G/1
queue is a single-server queue where customers arrive according to a Poisson process, and service times
are independent and identically distributed general random variables. The process of establishing a
mathematical model for the queuing system is as follows:

There are n + 1 phases in this system, O is the idle period, and s (s = 1,2, - - - , n) are the operational
phases. We assume that N(7) denotes the number of customers in the system at time ¢, J(¢) denotes the
phase in which the system operates at time ¢, R (f) (s = 1,2,--- ,n) represents the elapsed service time
of the customer currently receiving service during phase s, F (x) = Prob{R,(t) < x} (s =1,2,--- ,n)
denotes the probability distribution function corresponding to R(¢), and uy(x)dx is the service completion
rate of the server in the interval (x, x + dx] if the system is in phase s and satisfies yy(x) > 0 and
fooo Us(x)dx = co. The service time of the any two phases of service are mutually independent. Based on
the properties of conditional probability and differentiation, we have

_d(1- Fy()

ps(x)dx = Prob{x < Ry(t) < x +dx | Ry(t) > x} = F.0)

Then, from this and F(0) = 0, we obtain the probability distribution function of the service time
of the server in the phase s,

Fy(x) = 1 — ¢ b m@ar,

According to the definition of probability distribution function, we know that Fy(x) > 0 and
lim,_,. F¢(x) = 1. Therefore,

Hs(x) =0, foo ps(x)dx = oo,
0

We assume that, in phase s, the arrivals occur according to a Poisson process of rate 4; > 0. In
the idle period, the Poisson arrival rate is 4o > 0; upon arrival, the system moves to some operative
phase s with probability g, and the customer service upon arrival begins immediately, where g, > 0 and
%1 ¢s = 1. Then, according to the definition of Poisson process and exponential distribution, we have

Prob{N(r) = k, J(1) = s} = (ﬂlj)"e_%,’ t>0,k>0, s=0,1,--- ,n, (1.1a)
Prob {arriving one customer within the Af time in phase s}
= LAt +o(AD, s=1,2,--,n, (110
Prob {arriving two or more customers within the Az time in phase s} (L10)
=o(An, s=12,---,n,
Prob {the server completing one service within the Az time in phase s} (L1d)

= us(0Ar +o(Ar), s=1,2,---,n,
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Prob {the server completing two or more services within the Az time in phase s}
=o(An, s=12,---,n,

where o(Ar) denotes the infinitesimal quantity of Az. Clearly, the process {(N(¢), J(t),Ry(t)) : t > 0} is a
continuous-time Markov process with state space

(1.1e)

I'={0,0}U{k,s,x) [ k=1,2,---5 s=1,2,---,n, x 20}

We define
Poo(t) = Prob{N(r) = 0, J(1) = 0}, (1.2a)

Dis(x,t)dx = Prob{N(t) = k, J(t) = s, x < R(t) < x + dx}. (1.2b)

Then, consider the changes in the system during Af time. Based on the formula of total probability,
the properties of Markov processes, and the above Eqs (1.1a)—(1.2b), we have (for convenience, assuming
Ax is the same as Ar)

oot + Af) = Prob {Within the ¢+ At, no customers in the }

system and the service desk being idle

_ Prob at time 7, no customers in the system, during At
B no customers arriving and the system is idle

at time ¢ there is one customer in the system,
+Prob during Af no customers arriving, server
completing one service within Az in phase 1

at time ¢ there is one customer in the system,
+Prob during A7 no customers arriving, server
completing one service within At in phase 2

(1.3a)
at time ¢ there is one customer in the system,

+Prob during Af no customers arriving, server
completing one service within At in phase n

+0(At)

= poo(O(1 = A1) + f p11(x, Dy (x)dxAr(1 — A, Ar)
0

+f P1.2(x, D (X)dxAL(1 — ;A1)
0

+ ...

+ f Pra(X, Dun(0)dxAL(1 = A,A1) + o(A1),
0
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pis(x+ At t + At)

at time 7 + At, there is one customer in the system,
= Prob { the elapsed service time of the customer currently
receiving service during phase s is x + At

at time ¢, there is one customer in the system and the service (1.3b)
= Prob time that has passed is x, no customers arrived within
At and the server did not complete the service in phase s

+0(Ar)
= p1s(e, (1 = LAD — p(0)AL) + o(Ar), ,1<s<n,
Dis(x + At t + Ar)

at time ¢ + At, there are k customers in the system,
= Prob < the elapsed service time of the customer currently
receiving service during phase s is x + At

at time ¢, there are k customers in the system and the service
= Prob time that has passed is x, no customers arrived within
At and the server did not complete the service in phase s (1.3c)

at time ¢, there are k — 1 customers in the system and the
+Prob{ service time that has passed is x, one customer arrived in ¢ + o(At)
At and the server did not complete the service in phase s

= Prs(x, (1 = LAD(1 = ()AL + prer s(x, DAAN(L — ps(x)Ar)
+o(Ar), s=1,2,---,n; k>2.

We consider the boundary conditions as follows:

at time ¢ + At, there is one customer in the system
P50, 1+ AAr = Prob{ y }

in phase s and the service has not started yet

at time ¢, the system is in idle state, but
= Prob{ has just reached one customer and the system
has jumped from idle state to phase s

at time ¢, there are two customers in (1.4a)
+Prob ¢ the system in phase s and the server has
just completed one service within At

+0(Ar)

= Poo(D)g;At + f P2s(x, D (x)dxAt + o(Ar), 1 <s<n,
0
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at time ¢ + At, there are k customers in the system
Pis(0, 1+ ADAr = Prob{ y }

in phase s and the service has not yet started

at time ¢, there are k + 1 customers
= Prob{ in the system in phase s and the server ; + o(Af) (1.4b)
just completes one service within Az time

= f Di+1.5(X, D (x)dxAt + o(Ar), ,1<s<n.
0

Assume that the initial values
pO,O(O) = g0,0 Z 07 and pk,S(x’ O) = gk,S(x) Z O’ k Z 13 s = 192’ e ’n’ (15)

satisfy
800 + Z Z f grs(X)dx = 1.
s=1 k=1 Y0
Based on Eqgs (1.2a)—(1.5) and the definition of partial differential derivatives, we obtain the
following integro-partial differential equations [3]:

dpoo(t)
dt

= —Agpoo(t) + Zf Di,s(x, Du(x)dx,
s=1 0

0:p15(x, 1) + 0, p15(x, 1) = —[A; + ps(X) ] p1s(x, 1),

0:Dis(X, 1) + Oy prs(x, 1) = —[As + (X)) prcs(x, 1) + Asprr 5(x, 1), k> 2,
(1.6)

P1,5(0,0) = ggAopoo(t) + f D2.s(x, Dg(x)dx,
0

Dis(0,7) = f Prr1.s(X, Dus(x)dx, k> 2,
0

200(0) =800 >0, prs(x,0)=grs(x) >0, k>1, 1<s<n.

In [3], several static indices for the system (1.6) such as the static queue length and static sojourn
time distribution of an arbitrary customer were developed under the following static hypothesis:

® limt—wo p0,0(t) = P00,
o lim, o prs(,0) = prs(), k=1, 1 <s<n.

From the perspective of partial differential equations, the above hypothesis implies the following
two hypotheses:

e (H1): The system (1.6) admits a time-evolving solution.
e (H2): The aforementioned time-evolving solution converges to its static.

In this article, we investigate the aforementioned static hypothesis, that is, (H1) and (H2), and
consider the asymptotic behavior of the dynamic indices of the system (1.6). It is worth noting that when
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n = 1, system (1.6) becomes the classical M/G/1 queuing system [5], and a detailed dynamic analysis of
this classical queuing system was conducted in [6—10]. Gupur et al. [6] studied the well-posedness of
the queueing system [5] and obtained the strong convergence of the solution of the system when the
service rate is constant. When the service rate is a bounded function, similar results to [6] are obtained
by [7]. In [8-10], the exponential convergence of the solution of the queueing system [5] was studied.
Therefore, our results include the above findings.

In the study of partial differential equations, many solutions of partial differential equations can
function as semigroups in Banach space. By studying the properties of semigroups, important properties
such as the existence, uniqueness, and stability of solutions to partial differential equations can be
obtained; see [11-15]. In this article, first, we convert the system (1.6) into an abstract Cauchy problem
in a natural state Banach space. Then, using the semigroup theory on Banach spaces, we show that the
system operator generates a positive Cp—semigroup of contractions on the state space. Consequently,
we verify that the system (1.6) admits a unique positive time-evolving solution, which shows that (H1)
holds under certain conditions.

Second, we investigate the asymptotic behavior of the solution. To this aim, we need to know the
spectrum of the system operator; see [16—18]. For example, in order to study the asymptotic stability
of multilayer thermal wave systems, Avalos et al. [16] conducted spectral analysis on the system and
found that the system operator had no spectral points on the imaginary axis. Drogoul and Veltz [17]
proved that O is the unique spectral point of the spike neural network operator on the imaginary axis,
thus obtaining the exponential stability of the system. In [18], it was proved that 0 is the point spectrum
of the system operator of the queuing system and is the unique spectral point, thus obtaining the solution
corresponding to this queuing system that strongly converges to its static solution.

Moreover, it is a challenge to find spectrum on the imaginary axis. Here, we apply Greiner’s [19]
boundary perturbation method to fully describe the spectral distribution of the system operator on
the imaginary axis. If the service rates are constants, then we obtain that the system operator of the
system (1.6) has uncountable eigenvalues on the left-half complex plane. Consequently, these spectral
results imply that the time-evolving solution of system (1.6) at most strongly converges to its static
solution. In other words, (H2) holds only in the context of strong convergence.

Finally, we discuss the asymptotic behavior of the dynamic indices of the system (1.6). By
using cone theory and positive operator theory, we prove that the time-evolving queue length of the
system (1.6) converges to its static queue length under some conditions. This asymptotic result includes
the result of [3].

The remaining part of this article is organized as follows. In the next section, we rewrite the
system (1.6) as an abstract Cauchy problem in a Banach space and provide the well-posedness. In
Section 3, we provide a complete asymptotic behavior of the solution of system (1.6). In Section 4, we
discuss the dynamic indices of the system (1.6). To demonstrate the exponential convergence of the
solution, we conduct some numerical analysis in Section 5. We conclude this article in the last section.

2. Well-posedness

We choose the state Banach space of system (1.6) as follows:
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p] = (p0,0’p],l’pQ,l" ”)7ps = (p],sapz,sa"')72 S s < n,
X = (plapZa"' ’pn) p0,0 ERapk,s eLl[O’ m),ll(plapZa'“ 9pn)||
= |pool + Z’;ﬂ 2121 IPksllLi0,00) < 00

Define the maximal operator of the system (1.6) by

Au(pPr, P2, Pn)

—A0P00 + 2emt PsPls Bypio B.pin
Bipi Aapio+ Bopon AnPig + Bupon
= A1p11 + Bipa NP2z + Bapsa|, oo | AuP2n + BuDsa ||’

Aip21 + Bips) Aap3r + Bypas AnP3n + Bupan

<00,
L'0,00)

— [ + p()(x), v e WH0, 00),

with domain

dpk,s
dx

B dprs 1 N
D(A,) = {(pl,pz,--- cpn) €X | — = € LT[0, 00), Z:;;'

where p; ; are absolutely continuous functions, kK > 1, 1 < s < n, and

B _dv(x)
~ dx

osf = fo fus(dx,  f € L'[0, ).

Byv

We choose the boundary space as 0X = [' xI' x --- x I' and define boundary operators P, ® :

n

D(A,,) — 0X of the system (1.1a) by

P1,1(0)) (p12(0) P1.,(0)
\P(plapZa“' 7pl’l) = p2’1(0) N pZ»Z(O) R pz,n(o)

O(p1,p2, -+ 5 Pn)

q1dopoo + ©1P21) (92d0P00 + P2P22 qndoPoo + PnDon
_ Y1P3,1 ¥2P32 PnP3n

P1P41 ’ Y2P42 e PnP4n
Now, we introduce the system operator (Ag, D(Ag)) of the system (1.6) by

2.1

A(D(plaPZ’ tet »Pn) = Am(pl’pZ’ tt »pn)’
D(Aq) = {(p1, P2, , pn) € DA)IY(P1, P2, s Pn) = ©(p1, P2, s P}
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Then, the system (1.6) can be written as an abstract Cauchy problem in the Banach space X:

d(pl’p27"' 7pﬂ)(" t)
= A b b e b n .’t b t O’ b
o o(P1, P2 P, 1), 1€ (0,) 2.2)

(Pl’ P2, ’pn)('7 0) = (gl()’ gZ(')’ T gn()),

where g1(-) = (80,0, £1,1(:), 82,1(),*+), &(-) = (g1,5(-), g2,5(-),--+), s =2,3,--- ,n.

Theorem 2.1. Let Ag be defined by Eq (2.1). If us(x) <ty = SUP (0 ,00) Hs(X) < 00 (1 < 5 < n), then Ag
generates a positive Co—semigroup e**' of contractions on X.

Proof. For self contained and conciseness, we only sketch the proof of Theorem 2.1. To start, we
divided operator A into three parts A, = A + U + E , where

dpi2(x) dp1y(x)
~oPoo) (=755~ ST
_dpu _dpao(x) _ dpan(x)
dx dx dx
A(pl’ T, pn) = _dPZ,l s _dp3,2(x) [ s _dpfi,n(x) s

dx dx dx

L) ¢ 110, 00), py,y(x) are absolutely
D(A) ={(p1,---, pn) € X| continuous functions and p,(0) = Ty ,p; +,
+Lwrl,spsdx’ k> 1; 1<s<n

where

e * 0O 0 O
qidoe™ 0 pp O

QS/]‘O O O Hs 0

0 0 u

Loy = 0 0 0 ) rls:O 0 0 , 2<s<n
0
—(A1 + p)pri(x)
Upr, -, pw) = || =+ 1)p2i(0) + ipra(0) |,
—(A1 + pu)p3i(x) + A1 pri(x)
—(A3 + u2)p12(x) —(Ay + ) pra(x)
—(A2 + u2)par(x) + Aapi2(x) —(Ay + pp)prp(x) + A, p1p(x)

—(Ap + ) p32(x) + Aapaa(x) |’ = (A + ) P3p(X) + Aupon(X) ||

ZZ:]:“S J‘:)w pl,s(x)dx
E(p1,---,pa) = 0 ,
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DWU)=X, D(E)=X.

We can verify that ||(y] — A)7!|| < m for all y > My = max{u,, 1,, -+ , i, }, where I represents
the identity operator. Moreover, it is easy to prove that D(A) is dense in X. Then, using the Helle-Yosida
theorem (see [20, Theorem 4.20]), we obtain that A generates a Cp—semigroup. Due to the operators U
and E being linear bounded, with perturbation theory of the semigroup, we know that Aq generates a
Co—semigroup e*®’. Thus, we complete the proof of this theorem.

Next, we investigate the isometry of e’

as follows:

. It is easy to obtain that X*, the dual space of X, is

Py =Py Plis Py ) Ps = (PlpPrg ), 25 s<n,
X =3 p)| Poo € B Pp, € LV10,00) 11}, p)I
= sup {sup |pj gl sup 1 [1p} llzsioe | < o0

If we take a set X, = {(p1, p2, - ,Pn) € X | poo =20, prs(-) >0, k> 1, 1 <5 <n}inX, then,
Theorem 2.1 ensures e**'X, C X,. Now, for any (p;, p2,- -+ , pn) € D(Ap) N X, we choose

JE L)

It is not difficult to calculate that for (p}, p3,---, p;) € X" and (p1, p2,- -+ , p») € X4, we have

(p;p;a ap:;) = ”(plapZa' o »pn)”

<(plap2a e 5pn)a (pT’p;’ e ’p:)>

Poo + Zn: i fom Prs(x)dx

s=1 k=1

= ||(pl,p2,' o ’pn)” = ||(p1’p2’ e ’pn)”z-

This shows that (pTv p;a e ’p:) € Q(pla P2, 7pn)a where

<(pl,p27”' ’pn)a(p77p;"" 7p;:)>
Q(pl’pZ"" ,pn): (pT’p;a 9PZ)€X* :”(pl’p27"' 7pn)||2

In addition, we obtain for (py, p2,- -+ , pn) € D(Ae) and (p}, p5,- -+, p;) € Q(p1, p2,- -+, pn) that

<A(D(p1’p2"" ,pn)’ (p?ap;a”' ’p:)> = ||(p1’p2"" 7p}’l)||

X{—/lopo,O"'Z f P @dx+ f A,picr o(X)dx
s=1 Y0 0

s=1 k=2

n o) 00 d ?
+ Z Z fo [_ ps.x(x) = (A + ,us(X))pk,s(X)] dx} =0. 2.3)

s=1 k=1

Then, Eq (2.3) implies that Ag is conservative with respect to Q(-). Theorem 3.6.1 of [21]
stated that: Assume that Ay is densely defined, conservative with respect to Q(:) : D(Agp) — X* and
(yI — Ap)D(Ag) = X for some y > 0. Then, for some g € D((Ag)?) , the corresponding semigroup to
Cauchy problem (2.2) is isometric. Hence, we obtain the following result.
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Theorem 2.2. Let p(-) satisfy p(x) < sup,oe)Ms(x) < oo, 1 < s < n. If the initial value

(p19p29 ) pn)(" O) = (gl()a g2(')a e 9gn()) Of the SyStem (22) belongs fo D(Aé))’ then Semigroup
e’ is isometric for (g1(-), g2(-), -+, gu()). That is,

(21, 20+ a DI = (1), 82+ s gu(Dlls 1 € [0,00), 24

By combining Theorems 2.1 and 2.2, we obtain the main result in this section.

Theorem 2.3. Let uy(-) satisfy ps(x) < SUp, oo is(x) < 00,1 < s < n. If the initial value
(21(-), &2(-), -+ , gu(+)) of system (2.2) belongs to D(A(ZD), then system (2.2) admits a unique positive
time-evolving solution (p(-, 1), p2(-, 1), -+, pa(-, 1)) which satisfies

121G, 0, P25 D), - PO = 1, V2 € [0, 00). (2.5)

Proof. Due to (g1(-), g2(-), -+, &n(-)) € D(A) and (g1(-), 82(), -+ , gx(-)) € X, it is easy to see that
(81(-),820), -+ ,ga(")) € D(A2) N X,. By Theorem 1.81 of [12], we see that the system (1.6) has a
unique positive time-evolving solution (p;(-, 1), p2(-, 1), - - - , pa(:, 1)), which can be expressed as

(P1C 0, pa(s 1), -, pas D) = €81 (), 82(), -+ ga()), V1 € [0, 00). (2.6)
From this together with Eq (2.5), we obtain
I(P1C 1), P2 G ), paC DN = Nle™(g1(), £20), -+ gaOII = 1, V2 € [0, 00). 2.7)

This illustrates the physical meaning of (p;(-,-), p2(:,*), -+, pn(:, ).

3. Asymptotic behavior of the time-evolving solution

In this section, our main objective is to address the issue of asymptotic behavior of the time-
evolving solution that we stated in Eq (2.6). In this regard, we prove that the time-evolving solution of
the system (1.6) strongly converges but not exponentially converges to its static solution. In other words,
hypothesis (H2) holds only in the context of strong convergence.

3.1. Strong convergence of the time-evolving solution

The main result of this subsection is given by the following Theorem 3.1.

Theorem 3.1. Let uy(x) : [0, 00) — [0, 00) be a measurable function that satisfies

0< inf ,US()C) < /-ls(x) < sup ,US(X) < 09, I<s<n.
*€[0,00) x€[0,00)

Then, the time-evolving solution of the system (2.2) strongly converges to its static solution. In
other words,

}lgl”(pl’pZa ,pn)(,t)_«p’[,p;, ’p;kl)’(glng"" ’gn)>(p1’p2"” ’pn)()” = 0’

where (p}, p5,--+ , p,) and (p1, p2,- -+ , pa) are the eigenvectors associated to zero, respectively.

To prove the above Theorem 3.1, we need to find the spectra of Ag along the imaginary axis. For
this, we first provide the following seven lemmas.
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Lemma 3.1. Let Ag be defined by Eq (2.1). If uy(x) : [0,00) — [0, 00) is measurable function
that satisfies

O<pu = inf py(x) <p(x) <p,= sup pe(x) <oo, 1<s5<n,
—s XE[0,00) XE[0,00)

then, zero is an eigenvalue of Ag with geometric multiplicity one.

Proof. We need to solve A¢(p1, P2, , pn) = 0 for unknown (p1, ps,- -+ , p,). This equation is equiva-
lent to

%m=2fpummw, (3.12)
s=1 Y0
dp,
Tf”:—uﬁmemAw, (3.1b)
X
P _ ) 1 k=2 3.1
dx - _[ s +/~1s(x)]pk,s(x) + spk—l,s(x)a = 4y ( . C)
D1.5(0) = gsAopoo + f P2.s(X)us(x)dx, (3.1d)
0
pmm>=j‘pmmuwxm¢n k2. (3.1¢)
0

Solve Egs (3.1b) and (3.1c) to obtain

e N (A0
Prs(x) = e @I 2 (0), k2 (3.2)
j=1

(- D!
If we take p;(0) = 27®*Vp; (0), p1.,(0) = gsAgpoo > 0 and define

00 k X e k X
Crys i= A0 el 1T gy dys = u (x)—(/lsx) el Ty >
,S o k' s .S 0 K k’ 5 = 1,

then p; ,(0) = 2= *Dp, (0) satisfies the boundary conditions (3.1d) and (3.1¢). Therefore, since the
Cauchy product of series, the formula fow py(x)e b @k gy = 1 and

Zn: i Prs(0) = Aoqo0, i Chs = f"" e b gy, i dis =1,
0 k=1

s=1 k=1 k=1

we have

n
s=1 k=1 s=1

© oo W ek
Z j(: |Prs(0)ldx = Z Z Z CjsPk-j+1,5(0)
k=1 j=1

3.3)
x A
= /l()p(),of e_fo “-Y(T)d’dx < —Op(),() < 00,
0 H

—S

Eq (3.3) means that zero is an eigenvalue of Ap. Moreover, by Eqgs (3.1a) and (3.1d)—(3.2), we see
that the geometric multiplicity of zero is one.
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Now, we use the idea of [19] to describe the other spectrum of Ag along the imaginary axis. For
this objective, we define the operator (Ay, D(Ag)) by

AO(Pl,pz,"' ’pn) :Am(plaPZa"' »pn),
D(AO) = {(plap2a e ’pn) € D(Am)|lP(plap2’ tte ’pn) = O}

and discuss the inverse of Ay.
For given (y1, ¥, ,yx) € X, consider (yI — Ay)(p1, P2, -+ » Pn) = V1,2, ,yn) of unknown

(p1, P2, » Pn) € D(Ap). This equation can be equivalently written as the following system of equations
(y + A0)poo = Yoo + i fo i P1s(Op(x)dx, (3.4a)
s=1
dpi,s(x)
e =[y + A + (0] p1s(x) + y1,5(), (3.4b)
dp;’;(x) = =y + Ay + (O] s (x) + AePrer 5(X) + Yies (), k > 2, (3.4¢)
Pis(0)=0, k>1; 1 <s<n. (3.4d)

By solving Eqgs (3.4a)—(3.4c) and using Eq (3.4d), we obtain

X
Prs(x) = e—(7+/13)x—f0 us(dt f y1,s(T)€(y+/lS)T+f° ﬂs(é:)dde’ (3.5a)
0

Prs(x) = e OHITL IO [y () AT O g
(3.5b)
— D x— X . X . T .
Iy P arilat WO fo Pic1s(D)e T 1@ g o > 2

1 1 . °°
= + ¢ S(x)d
Po.o 7+/10y0’0 v+ ;L P1,s(Ou(x)dx

1 1 - “ (3.5¢)
= + s
y+/10y0’0 v+ 4 ;f; ()

% [e—wus)x—fo’“ux(r)dr I yl’S(T)e(%/ls)”for#s(f)dde] dx.

Denoting by

E f(x) = PRA I usdr f f(T)e(yJ”l“)H Jo us&)de dr, f e L [0, 00), (3.6)
0
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then the Eqs (3.5a)—(3.5¢) and ¢, f(x) = fooo F(x)u,(x)dx, f € L'[0, 00) give, if the resolvent of A, exists,

I = A0) ' O1,y2, -+ 5 )

1
| i 7+/l() O 0 O yo’o
7+ Zs:l osEy1,5(x) 0 E, 0 0 - llyiix)
_ 0 + 0 NHEP OE O y21(x0) |,
: 0 /l%E”I’ /11E12 El ce y3,1(.X)
. : . 3.7
E, 0 0 -\(y2x) E, 0 0 -\l
LES Ey 0 ---||y2a(x) LEX E, 0 -|]yaa(x)
A%Eg /12E§ E2 tte )’3,2(x) T /&Ez /lnEi En e y3,n(-x)

The following Lemma 3.2 indicates the resolvent set p(Ag) of Ay.

Lemma 3.2. Let uy(x) : [0, 00) — [0, 00) be a measurable function that satisfies

0< Ho= i[r(}f ),us(x) < pg(x) Spg = sup py(x) <o, 1<s<n.
— x€l0,00

x€[0,00)

Then, {y € C | Re(y) + 1o > 0,Re(y) + u > 0} C p(Ap).

Proof. For all f € L'[0, o), by performing integration by parts to Eq (3.6), it is easy to obtain that E,
satisfies the following inequality:

E(| < .
1EA Re(y) + A, +

Then, using the inequality ||¢;|| < sup,g ) is(x), we calculate for any (y1,y2, -+ ,y,) € X that

IyI = Ao)~ (i, 2, -+ ,yn)ll

1
S s E N e
e+ 200 ey )+ p» leso EIY 1ol 0.0
£ ) ATNEN Y Iialloes + Z A EF Z Y jallzi0 + -+
k=1 j=1 k=1 Jj=1
Y ANEN Y 1y jallioe)
k=1 j=1

n

1 i
< — + . .
Re() + 40" * Re(y) + 4 Z:; Re(y) + 4, + 0 lioe

k-1

1 o
+ (o]
Re()/) + A +,L_11 Z [Re(y) + A+ ) Z ||y]1||L1[0 )

0 -1 o
i oy F oo
Re(y) + /12 +u K, Z:A [Re(y) + A +u ) ,Z:; ||yJ,2||L1[0, )
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k-1

Re(y)+/1 +u Z[Re(r}/)_}_/}' oy ) Z”yjnHLl[Ooo)

o)
n k=1

n

1 1 i,
- @ + ) }
Re(y) + Ay ool Re(y) + Ay Z Re(y) + A, + 1 ||)’1 Il 10,00)

+ 5 o0
ZRe(y)ﬂt Znyj 1100

_5]1

I I 7 I
<su >
P {Re(y) + 2 Re() + g Re() + 4+ | Re() + 1

1 Hy N 1
Re(y) + A Re(y) + L+ 4, Re(y) +p’

1 i,
+
Re(y) + Ao Re(y) + 4, + B Re(y) + B

} ||()’1,)’2a e ’)’n)”

That is, inequality (3.8) means that the result of this lemma is correct.

(3.8)

Next, we use the following Lemma 3.3 to provide a specific expression for the Dirichlet operator.

Lemma 3.3. Lety € {y € C | Re(y) + 49 > 0,Re(y) +p > 0}. Then, we have (pi, p2,---

ker(yl — A,) if, and only if,
1 u 00 §

= (0 ) ~(y+d)x= [} us(0)d g ’

Poo = ;:1 Pus( )j; ws(x)e b X

(Agx)7!
—1)!

Prs(x) = e ~(y+As)x—J;” Hs(T)dTZ Pi-jr15(0), k> 1,

Ps(0) = (p1,5(0), p2,5(0), p3,5(0),---) €I', 1<s<n.

Proof. 1f (p1, p2,- -+, pn) € ker(yl — A,,), then (yI — A,,))(p1, p2,- -+, pn) = 0, that is,

o+ A)poo = | f Py (0dx,
s=1 Y0

dpl,s(x)
dx

= —[’)/ + /ls + ,Us(-x)]pl,s(x)a

dpk,s(-x)
dx
By solving Eqgs (3.10a)—(3.10c), we obtain

= _[7 + A+ ,ux(x)]pk,s(x) + /lspk—l,x(x)'

(A2
(j=D!

k
Drs(x) = e rHa e Z

J=1

Di-j+1,5(0), k>1,

,Pn) €

(3.92)

(3.9b)

(3.9¢)

(3.10a)

(3.10b)

(3.10c)

(3.11a)
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1245

1 & 0 x
Poo = VN Z Pl,s(o)f e A i (3.11b)
0 s=1 0

Since (p1, p2,- -+, pn) € ker(yl — A,,), according to the Sobolev embedding theorem [22], we can
easily obtain
D 1P < D lIprsllzpoes
k=1 k=1

- de K
< Z (”pk,s”L'[O,oo) + H e |l < o0,
=1 L'[0,00)

Hence, Eqgs (3.11a)—(3.12) show that Eqs (3.92)—(3.9¢) are true.
On the other hand, if Eqgs (3.9a)—(3.9¢) hold, due to the formula

f e “xrdx = ¢ * Dk
0

it holds true for any ¢ > 0 and positive integer k > 1, and performing integration by parts, we deduce

(3.12)

e~ Re)+2)x~ I ps(@ydr (4s X) .
1P.sll21[0,00) Sf(; o Z 1)‘|pk_‘,+1’s(0)|dx

koo
< Z s |pk I s(O)lf ] 1 —[Re(y)+/l +mfx€l()w)/1v(x)]xdx

=~

A
= ;] R+ 4,7 PO

Then, by the Cauchy product of series, we calculate that

00 co  k i—1
/1]
slliioe < . | Pi—isn.s(0
kZ_;“Pk, ||L'[0, ) ZZ Re(y)+/ls+,t_1 ]]|Pk j+1,( )]

k=1 j=1

J1 o

1 (o)
- 3.13
Re(y) + A+ Z [Re(y) A+ u ) Z |Pks(0)] (3.13)

J=1

W Z IPes(0)] < oo,

for any y > —u . Inequalities (3.12) and (3.13) show that (p1, p,-- -, p») € X. In addition, by Eq (3.9b),
we have

dpl S('x) _ _(*
g - _ A + U, (0)e 0t Ax Iy ms(@ydr
e [y + As + us(0)]p15(0)e o (3.14)

= —[’y + /ls + ,Us(x)]pl,s(x)’
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dpk,s(x)
dx

(A"
- D!

= [y + A, + p(0]e Tk "‘“)"’Z Pijs1,50)

| 3.14b
+Ae ~(r+A9)x= [ ns(@dr Z (4 X);)' pk—js(o) ( )

—[y + A5 + ps(O)1prs(X) + Asprers(0), k= 2.
Combining the above Eqs (3.14a) and (3.14b) with inequality (3.13), we obtain

00
k=1

This inequality implies that

dpk,s
dx

(|7|+2/1 + sup ,us(-x))Z”pks”Ll[Ooo) < co.
L'[0,00)

x€[0,00)

dpk s
dx

< oo. (3.15)

ZZ

=1 k=1

L'[0,00)

Hence, Eqgs (3.13)—(3.15) indicate that (py, p2,- - , pn) € D(A,,) and

('}/1 _Am)(pl,pz’ ttt ,pn) = ()

Clearly, by the definition it is not difficult to show that the boundary operator ¥ is surjective. In
addition, for all y € p(A,), the operator

kertyl A - ker(yl — A,,) — 0X,

is invertible. Now, for any y € p(Ap), we introduce the Dirichlet operator by

- 10X — ker(yl — A,).

D, := (‘P

Then, using Lemma 3.3, for any y € p(A), we can obtain the following specific expression for D,:

ker(yl —Am))

D, (p1(0), p2(0), - - -, pa(0))

7_:/10 22:1 pl,s(o)wsgl,s 0 0 0 0 Pll(o)
0 ey 0 0 O P2,1(0)
— 0 +|e21 e 0 0 p3.1(0) |,
0 g1 &1 €1 0 P4.1(0)
. (3.16)
g 0 0 ---\(p12(0) gn 0 0 ---\(P1..(0)
&2 €2 0 - |[p200) a0 €n 0 || p2.4(0)
g2 &p €1 |20 e g g1 || P3O [
where
(A,x)!

e—(y+/ls)x—J(‘)Xlls(T)dT, j>1,1<s<n.

ST G
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Finally, using the expression of Dirichlet operator (3.16) and the boundary operator ®, we can
calculate the specific expression of @D, as follows:

®D,(p1(0), p2(0),- -+, pu(0)) = (J1, J2, -+ , J)(P1(0), p2(0), - - -, p,(0)), (3.17)
where
LDV psOsErs)  (@rerk e 0 Y (P1a(0)
0 OrE3f Pr€rk k€K || P24(0)
Jk = < k <n.

0 * OrEar PrE3x ki || p3x(0) ]

The following Lemma 3.4 was found in [23], and we use this lemma along with the above results
in this subsection to provide spectrum o(Ag) of Ag on the imaginary axis.

Lemma 3.4. Assume y € p(Ao). If there exists vy, that satisfies 1 ¢ o(®D,,), theny € 0(Ao) if, and only
if, 1 € o(®D,).

Lemma 3.5. Let Ay be defined by Eq (2.1). If us(x) : [0,00) — [0,00) is a measurable function
that satisfies

0< mf ,uc(x)<,u(x)< sup ps(x) <oco, 1<s<n,
x€[0,00)

then, we have iR N 0(Ag) = {0}, i* = —1.

Proof. If we take y = ib, i = —1, b € R\ {0}, then applying the Riemann-Lebesgue lemma, we obtain
that there exists M > O that satisfies

00 k—1 00 k—1
f e )g{l sX)K o (b A5)x- LNJ(T)deX <f(; 11,(x )Ei sX) 5 o st foﬂs(‘r)d'rdx’ (3.18)

for all |p| > M. Hence, using inequality (3.18) and the formulas }7_, g, = 1 and

f p(x)e b Oy = 1,
0

we calculate for p,(0) = (pi 4(0), pa,(0), p3,,(0),---) € I' \ {0} that

A
IOD(p1(0), p2(0), -+ puODl € —=="" Ip1 (O)llg.21 4

+ Z Z losersllp1s(0)] + Z Z 15Ehs] Z 1915 (0)

s=1 k=2 s=1 k=1
(o) (o]
<Z§ﬂwm2mmm
s=1 k=1 j=1
n o)

~ ()" et [ 5 | N
f ﬂs(x)me W40 Jy s (T ] Z |ps(0)]
0 - .

J=1

s=1 k=1
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S —
O [ e Ty 0
= =
n 00 /l k—1 " e
> ZE) % ol S [, (0)

s=1 j=1

- Z f ps(x)e” fo”*ﬂd’dem,s(on

= Z 15O = 11(p1(0), p2(0), -+~ , pu(O)II. (3.19)
s=1 j=1

That is, ||®D;|| < 1 for all |p| > M. Since 4y > 0 and u > 0, there exists y; = min{dy,u } > 0
such that {y € C | Re(y) > —y1} C p(Ap). This means that v = ib € p(Ap). Then, by the above
inequality (3.19), we know that the spectral radius r(®D;,) of operator ®D;, satisfies r(®D;,) <
|®D;|| < 1if |b| > M. In other words, 1 ¢ o(®D;,) for |b| > M. This indicates that there must be
Yo = 2|b| satisfying 1 ¢ o(®D,,). Consequently, using Lemma 3.4, we obtain y = ib ¢ 0(Ag) for
|b| > M, i.e.,

{ib|lbl > M} C p(Ag) and {ib||b| < M} C o(Ae) N iR.

On the other hand, since eA*' is a positive uniformly bounded semigroup (Theorem 2.1), using
Corollary 2.3 of [24], we obtain that 0(Ag) N iR is imaginary additively cyclic, which states that
ib € 0(Ap) NiIR, and we deduce that ibk € 0(Agp) N iR for every integer k. Therefore, combining the
above discussion with the inclusion relationship {ib||b| < M} c 0(Agp) N iR and Lemma 3.1, we have
o(Ag) N IR = {0}.

Lemma 3.6. The specific expression of the adjoint operator Ag™ of Ag is as follows:

Ao X5-1 457 ,(0) - 0 0 0 --\( P
0 m@ ¢ A 0 || pi )
AP PP = m)p 0t O 0 ¢ A -]l py (0],
(s, (0) 0 0 0 ¢ -||p;,@
H2(X) Py ¢ L 0 0 --\(pi,(x)
Ha(x)p7 ,(0) 0 ¢ A 0 ---||p5,(x)
P, 0|10 0 ¢ A || 5@
Ha()Pg ¢ A4 O 0 -\(P},()
Ha(x)p7,(0) 0 ¢ A& 0 ---[]p3, (%)
mp;, 0710 0 ¢ A ||pLO||

pkj()

with domain D(A}) = {(p}, p3. -+ . p) € X* | existing and pj; (c0) = h}, where ¢; = & — [A; +
us(x)] and h is a positive constant that is mdependent of k and s.
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Proof. For (pi,ps,--+,p.) € D(Ag) and (p}, p5.---,p,) € D(Ay), using integration by parts, we
calculate that

(Ao(p1, P2, s Pn), (D1 D5 Py = Poo

_/10]70,0 + Zj(: pl,s(x),us(x)dx
s=1
S (7] dpes(x) .
20 | e~ e @)@ | pi ()
s=1 k=1 0 X
+ Z f /lspk—l,s(x)pzs(x)dX}
k=2 0

— ~dopoatio + Pho Y, [ PR+ Y 0, 0)
s=1 Y0

s=1 k=1
n o co dp;;s(_x) )
+ ; ; I) Prs(x) [ i (4 + ,us(x))pk’s(x)] dx
s Z Z f pk,s(x)p;:“’s(x)dx
s=1 k=1 YO

= =AoP0.oPoo + Poo Z f P1s(Ops(x)dx
s=1 Y0

S| om0

s=1 k=2

+Z(‘]s/lopao+ f pz,s<x>us(x>dx)p1‘,x<0>+
s=1 0

Y fo @ [dp fi’;(x)

s=1 k=1

+ Z /ls kz_; L pk,s(x)p};l,s(x)dx

s=1

= (A + () pi (%) [ dx

= =A0P0oPoo + Poo Z f Prs(Ous(x)dx
s=1 0

+4AoPoo Z qsp1,(0) + Z Z f(; Pi+1,s(0u(x)dxp; ((0)
s=1

s=1 k=1

NS dp; ()
> fo pk,s(m[ e —us+us(x)>pz,s<x)]dx

s=1 k=1

+ Z /ls kz_; L pk,s(x)pltﬁLl,s(x)dx

s=1

= ((po, P15+ s Pn) Ap(Pos P>+ 5 Pu))- (3.20)

Then, from the last equation of the above Eq (3.20), we can obtain Ag".
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Lemma 3.7. The zero is an eigenvalue of Ay with geometric multiplicity one.

Proof. We consider Ay (p7, p5,- -+, p,;) = 0. This equation is equivalent to

—Aopoy + Ao Z qsp1.,(0) =0, (3.21a)
s=1
dpi ((x) . . )
dx - [/15 + :us(x)]pl’s(x) + /ISPZ,S(X) + ,us(-x)p0,0 = O, (321b)
dp;;s(x) * * *
i [As + ()P (%) + APy () + ()P (0) =0,k > 2, (3.21c¢)
Pis(@)=h, k>11<s<n. (3.21d)

By the above equations, it is easy to investigate that

h) (h h
(P1> P2 Py = ((][) (]) € D(Ag),

is a positive solution of Eqs (3.21a)—(3.21d). In addition, Eqgs (3.21a)—(3.21d) are equivalent to

Pioo =, a:p,(0), (3.22a)
s=1
1| dpi,(x)
P2 s(x) = ° [— cli + (A + pg(0)py (x) = ﬂs(X)pS,o] , (3.22b)
s X
\ 1 [ dp (0 . .
Pie1s) = = [=— 7 + (s + i) () = (P (0) ] K 2 2. (3.22¢)

Clearly, Egs (3.22a)—(3.22¢) imply that the geometric multiplicity of zero is one.
Proof of Theorem 3.1: Theorem 2.1 shows that semigroup e*’ is a uniformly bounded Cy—semigroup
on Banach space X. In addition, using Lemmas 3.1, 3.5, and 3.7, we obtain that 0,(Ag) N IR =
o,(Agx) NiIR = {0} and {y € C |y =ib,b # 0,b € R} C p(Ag), and zero is an eigenvalue of A3y with
algebraic multiplicity one. Hence, due to Theorem 1.96 of [12], we obtain that the time-evolving
solution of system (2.2) converges strongly to its static solution. In other words,

;ll)r{l.o ||(pl’p2’ et ,pn)(" t) - <(p>1ﬁ’p;7 e 9p:1)’ (gl’g29 et ,gn»(pl,pZ, e »pn)()” = 09

where (pi, p5,--- . p,) and (p1, p2,--- , p,) are the eigenvectors associated to zero in Lemmas 3.7
and 3.1, respectively.
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3.2. Exponential convergence of the time-evolving solution

To prove the exponential convergence of the time-evolving solution, we need to find the spectral
distribution of Ag on the left-half complex plane. For this objective, we first provide the following

Lemma 3.8.

Lemma 3.8. If A, < u;, 1 < s < n, then each point in

A= {7 < C' ‘7 F A+ A+ A+ — A

is an eigenvalue of Ag with geometric multiplicity one, in particular

( min {u,}, min {2 \/Aus — Ay — g )U[maXZ\/ sils — Ag — W}

1<s<n 1<s<n 1<s<n

Proof. For each y € A, we consider the equation A¢(p1, p2,--- » Pn) = ¥(P1, P2s- - -

(p1, P2, -+ » pn) € D(Ag). This is equivalent to the following system:

(y + A0)pop = Zﬂsf Di1,s(x)dx,
s=1 0

dp 5(x)
611 = —(y + A + ) p1s(x),
X
dpi.s(x)
;x = —(y + Ay + U Pes(X) + Ay Pror (%),

D1,5(0) = gsAdopoo + K f D2.s(x)dx,
0

pk,s(o) = /Jsf pk+1,s(x)dx, k> 2.
0

Solving Eqgs (3.23b) and (3.23c), we have

o (A0
Prs(x) = 70 Z — i@, kzlilss<n
From this together with the formula
(o'} ) _ '
f AR P (k=)' -, Re(y) + A; + u; > 0,
0 ()/ + /ls + ,us)kH_J

we obtain

A4
fopkxx)dx—z(wﬁ PO k=1

We can thus combine Eqs (3.23e) and (3.25) to obtain

k+1 k+1-j

A;
pk,s(o) = Hs — ,pj,s(()), k>?2.
; (7 + Ay + pe)r2)

Networks and Heterogeneous Media

Volume 19, Issue 3,

< 2, Re(y) + 11, > 0 } U {0},

, pn) of unknown

(3.23a)

(3.23b)

(3.23¢)

(3.23d)

(3.23e)

(3.24)

(3.25)

(3.26)
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This yields

s

Prs(0) = —F

(0) - —— _
Pis1.5(0) v+ A+ v+ A + U

Clearly, the above equation is equivalent to

v+ A + U

As
Di+2,5(0) = Di+1,5(0) — ;Pk,s(o), k>2.

N

For any complex number &g and 1, 1 < s < n, if we set

Pies2,5(0) = & Pies1,5(0) = [ prr1,5(0) — Eprs(0)], k > 2,

then it is easy to see that &; and 7, satisfy the following two equations:

v+ A+ A
&+ = 'u— &Eng = —.

s N

From Eq (3.29), it is easy to determine that

_ Y + /ls + Ms + \/(7 + /15' + ,us)2 - 4/1s,ux
= zlus R

&s

_ Y+ /1s + s — \/(7 + /ls + ,US)2 - 4/ls,us
= 2/JS .

S

Note that from Eq (3.28), we observe that

Prr25(0) = Epran 5(0) = 77 [p3,5(0) = €:pa(O)], k= 2.

Then, by reusing the above equations and organizing it, we obtain

Pis25(0) = Eprat 5(0) = E[Prrt 50) = Epics(0)] = E2[prs(0) — E,pici 5(0)]

—E[Pr-1,5(0) — &pr2.5(0)] = €2 [p4 5(0) — &,p3 5(0)]
= [77?_1 + §SU§_2 t+-t é:f_zns + é:f_l]p3,s(0)

—[77/5(_2 + fs77/§_3 t+-+ é‘:lsc_377s + é‘:ls{_z]gsnspls(o)’ k>2.

If & = 7, then Eq (3.32) is simplified as

Pri2s(0) = k& p3 (0) = (k — DEpy(0), k> 2.

——Pas(0), k=2

(3.27)

(3.28)

(3.29)

(3.30a)

(3.30b)

(3.31)

(3.32)

The inequality |pis2(0) < K€ p3(0)] + (k = D)IE[*p2,(0) can be obtained by taking the
absolute value of the above equation. Then, taking the sum of & = 2 to oo for this inequality, we obtain

D PO < Ips (O] ) &S +1p2s (O] Y (k = DI
k=2 k=2 k=2

(3.33)
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If & # 7y, then Eq (3.32) can be written as

p3,s(0) - nsp2,s(0)§k _ p3,s(0) - ‘fsp2,s(0) Uk

Di+2,5(0) =

‘fs_ns § é:s_ns s
This means that
|Prs+2.5(0)] < o+ (3.34)
; ’ ‘fs — N érs —ns
Moreover, take the L![0, co)—norm on both sides of Eq (3.24), and using the formula
foo XTI o~ ReM+Astug)x g, — (k= ))!
0 (Re(y) + A + py)f+1=7
for all Re(y) + uy > 0, we have
k /lk_j 00 .
”pk,s”Ll[O,oo) < Z (k_—‘])’lpjﬁ(oﬂ‘fov Xk_je_(Re(V)'F/lsHls)de
J=1
(3.35)

1 k

T Re(y) + 4+, & (Re(y) A+

k=j
) |p;s(O)].

~

Therefore, for all Re(y) + u; > 0, by the above inequalities and Cauchy product of series, we obtain

00 ©  k k—j
s oo < j, S 0
;npk,um ) Re(7)+ R ZZ(R6(7)+ T +M) 1P;.(0)

k=1 j=1
j-1
Re(y) + Ay + kz; lp“(())lz (Re(y) + Ay + ) (5.36)
Rem v kZ‘ RO

In addition, from Egs (3.23a), (3.25), (3.23d), and (3.26), it is easy to calculate that

1 < s
- (0, 3.37
Poo y+ao;y+ﬂs+us”l’() (3.372)
§0) = ¢ Aopoo + s | ————p15(0) + ———— > (0|, 3.37b
P1,5(0) = gsdopoo + 1 [(y+ﬂx+ﬂ‘g)2p1,( ) er/lerMJr?z,( )] ( )

('}’ + /ls + ,us)z - /1slu (7 + /ls + :us)CIs/lO

P25(0) = iy + ) “p1s(0) - p D005 (3.37¢)
(y + Ay + 1) — Aglts 4\

(0) = (0) = | —Z | pLL(0). 3.37d

P3.(0) sy + Ag + ) 2:(0) Y+ A+ P1.s0) ( )
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Finally, by Eqs (3.30a) and (3.30b), it is easy to see that y € A if, and only if, Re(y) + u; > 0 and

&l < 1, Ingl < 1, 1 < s < n. Therefore, if y € A, then from Eqgs (3.36), (3.33), (3.34), (3.37a), and
(3.37d), we obtain

P12, Pl = 1pool + D ) Ipksllisioes) < oo. (3.38)

s=1 k=1

The Eq (3.38) shows that for any y in A is an eigenvalue of Agp. Moreover, Eqgs (3.24), (3.26),
(3.32), (3.37a), and (3.37d) mean that the geometric multiplicity of every y € A is one.

Next, we observe the case y € R. Since Theorem 2.3 implies that (0, c0) C p(Ag), the real spectrum
of Ag in the interval (—oo, 0] exists. We discuss the real spectrum of A in the following three cases.

Case 1: (y + A, + uy)* > 44, if, and only if, |y + A, + p| > 2+/A,. Since y + p; > 0 and
Y + Ay + pg > 2 A g, we have y > 2 A, — A — . From this together with A, < pg and y + u > 0,
it is easy to calculate that

v<0=4uy+ ;) —44,u, <0

= (y + A+ 2050y + ) + 5 = Aty < (v + A7 = 25y + ) + 41
= VO + A+ p? = 4 < =y + A5 — 1)

= Y+ Ay + s+ Y+ Ay + 1) — A < 2u;

+ A + g + + A + ) — 4Au;
So<e=? ps + Ay + A, + ) M g

2u;

+ A5 + s — + Ay + p)? — A
0<n, =2 a ‘/(72 K Hs e <. (3.39)
1

This implies (maxlSsSn{Z VA — A — g}, 0) C 0(Ag). Then, from this together with Lemma 3.1,
we obtain

(max{z Vs = A, — ), 0] C o(As).

1<s<n

Case 2: (y + A, + u,)* = 4A,u, if, and only if, |y + A, + u,| = 2+/Au,. Since y + u; > 0 and
Y+ As + py = 2\ Ay, we deduce y = 2 Ay — A — . Then, using A < pg and y + p; > 0, we have

A+ s 2VAH Ay
0<§s:77s:y - /L: ‘,U: — < 1.
2,us 2/“13 Hs

This shows that max{2 VA u; — Ay — py, -+ , 2V A, — A, — i} 18 an eigenvalue of Ag.

Case 3: (y + A, + p1,)* < 444, if, and only if, =2 VA, <y + A, + g < 2+/Au;,. Since y + g > 0
and 0 <y + A + g < 2/, we obtain y < 2 vAu, — A, — ps. Then, from this together with A, < g,
y + s >0, and i? = —1, we have

7+/ls +/'ts + l\/4/ls:us - (7+ /ls +,us)2
2u; '

é:sa ns =

Therefore,

NG A A -+ A+ ), o
2,US Ms .
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Hence, this implies that

(— min (s}, min (2 T, - A, - us}) C o(Ao).

1<s<n

Consequently, by summing up the above three cases, we obtain

(= min ). min (23, = 4, = o)) | | max 2 37ss = 4, = 1,1,0| € (o).

1<s<n 1<s<n 1<s<n

Let wo(Ag), Wess(Ap), S(Agp) represent the growth bound, the essential growth bound, and spectral
bound of Ay, respectively. The spectral mapping theorem [11] means that

ap(e) = 7 U {0,

Hence, from this property and Lemma 3.8, we obtain that e”®’ has uncountable eigenvalues.
Therefore, eA*’ is not compact and it is not eventually compact by Corollary V.3.2 of [11].

Additionally, due to e**’ being a Co—semigroup on X with generator Ag, using Corollary IV.2.11
of [11], we know that wy = max{w.s, S(Ap)} and 0 (Agp) N {y € C | Re(y) > w} is finite for every
W > w,s. Using Lemma 3.8, we can obtain that the spectrum determined condition wy = s(A¢) holds
and wy = s(Agp) = 0 (we suggest that readers refer to the proof of Theorem 4.1 in [25] for similar proofs
in this part). Hence, using the aforementioned discussions, we have w,;; = 0. Then, by Proposition 3.5
of [11], we derive that e*’ is not quasi-compact.

The main result of this subsection is given by the following Theorem 3.2.

Theorem 3.2. Let u (-) := us be a constant and A; < s, 1 < s < n. Then, the time-evolving solution
of the system (2.2) cannot exponentially converge to its static solution. That is to say, there are no
constants M > 0 and & > 0 such that

||eAcbt (P12 P2 s Py + Ao (P1s P2s- - 2 Pw) — (D1 P2s -+ ,p,,)(O)”
< Me_gt”(phPZ’ Y pn)”’

for any t > 0 and (py, p2,--- ,pn) € D(Ag), where (p1, P2, , Pn)o) 1S the eigenvector associated
to zero.

Proof. Assume that (p;, p2,- -, p)o) and (p1, p2,- -+, pn)» are the eigenvectors of 0 and

rmax{2 A, — Ay — 5} = B,

1<s<n
in Lemma 3.8, respectively, for any r € (0,1). Hence, using Ao(p1,p2,---,pu)o = 0 and
Ao(p1, P2, s Py = 1Bs(P1s P2, + 5 Pu)(r)» WE have

e [(p1,par- Pn)o) +Ao(P1, P2, D)ol
Aol py, pay e DPu)o) + e Ap(p1, pas e s D))
=(p1,P2 " s Py + eAq’t”ﬁs(Pl,Pz, L Pr)o)

= (pla P2, ,Pn)(O) + rﬁserBSt(pl7 D2, pn)(r) (341)

=ée
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Therefore,

||€A‘Dt ((P1> P2+ P + Ao(P1, P2 5 D)) — (P1> P2, -+ ,Pn)(O)H
, Yt>0, Vre(,1). (3.42)

= rByle™! [|(p1, P2 s P

That is, there are no constants M > 0 and € > 0 such that

e ((P1, P2y s Py + Aa(P1, 2y s ) = (P1s P2+ 5 o
< Me™*ll(p1, p2, -+ p)ll-
for any > 0 and (p1, p2,--- , p») € D(Ag).

In neural network [17] and reliability model [12], it has been proven that the semigroup correspond-
ing to these systems is a quasi-compact strongly continuous semigroup, thus they obtain the dynamic
solution of the corresponding system that strongly converges to its steady-state solution. Therefore, the
result of Theorem 3.2 is significantly different from those in [12, 17].

4. Asymptotic behavior of the time-evolving queue length

Define the time-evolving queue length of system (1.6) by

L) = po+ Y, [

s=1 k=1

Then, by combining Theorems 2.1, 2.3 and 3.1 and Lemma 3.1, we can obtain the asymptotic
behavior of L(r).

Theorem 4.1. Let uy(x) : [0, 00) — [0, 00) be a measurable function that satisfies

0 < inf p(x) <ps(x) < sup ps(x) <oco, 1 <s<n.
x€[0,00) x€[0,00)

If the initial value (gi(-),g2(-), - ,8g.(")) of the system (1.6) and the -eigenvector
(P1(), P2(), -, Pa(+)) corresponding to zero satisfying ps(-) > u,(-), then time-evolving queue length
L(-) of system (1.6) converges to its static queue length. That is to say,

tli_)m L(t) = poo + Z Z f Pr.s(x)dx.
0 s=1 k=1 v0

Proof. For any (p1, p2,--+ , pn) and (y1, 2, -+ ,y,) in X, we introduce an order relation “>" by

(plap27"' 7pn) > (ylayZ,." ’yn)
S ps>Yys, 1<s<n
& Ppoo = Yoo and pi (x) = yr(x), x €[0,00), k=1, 1<s<n.

Then, it is not difficult to show that “>” is a partial order relation in X. Therefore, (X, >) is a
poset. Let (py, p2,- -+ , Pn) be the positive eigenvector associated to zero of Ap (Lemma 3.1). Let
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(P1, P2, -+ » Pn) and the initial value (g;, g2, - , g,) of the system (2.2) satisfy the aforementioned
partial order relation

D00 = 800> Prs(X) > gis(x), x€[0,00), k>1,1<s5<n.

That is, (P, P2, » Pn) = (21,82, -+ »&n). Due to e’®’ being a positive linear operator (Theo-
rem 2.1), it is a monotone increasing operator. In addition, by Theorem 2.3 and Lemma 3.1, we
know that

eAd)t(ﬁl(')’ ﬁZ(')’ Y ﬁn()) = (ﬁl()’ ﬁZ(')’ ) ﬁn()), 2> 0.
Therefore, from this together with the partial order relation (py, pa,- -+, Pn) = (81,82, 5 &n)>
we have

{ (pl('a t)a p2(" t)a e ’pn(" t)) = eA(Dt(gl(')’ gZ(')7 T gn())7 rz O,

e (P1(), Pa(), -+, Pal)) = €2(g1(), 82(), -+, gu(9))

= (P1(), P2(), -+ 5 Pa()) = (p1C5 1), p2(5 ), -+ -, pal-5 1))

= Poo = poo®), Prs() = prsC 0, k=1,

= 00> foo+ ). ). f Prs(D)dx = pood) + Y > f Pis(x, dx, 12 0.
s=1 k=1 *0 s=1 k=10

Theorem 3.1 includes the following result:

|Poo(t) — Pool + Z Z f |prs(x, 1) — ﬁk,s(x)ldx} =0.
0

s=1 k=1

lim
t—00

Hence, by Lemma 3.1 and the Lebesgue theorem, we obtain

lim |Z(5) = | oo+ ) ) f pk,xx)dx]

- s=1 k=1 0

< lim [|p0,0(t) — Pool + Z Z f |Pr.s(x, 1) = ﬁk,s(x)ldx] =0.
e s=1 k=1 Y0

This inequality shows that

tllg L(t) = poo + Z Z fo Prs(X)dx.

s=1 k=1

Remark 4.1. In Theorem 4.1, the static queue length is obtained by using the eigenvector that related

to zero (Lemma 3.1). This is the same as the result obtained by introducing probability generating
functions in [3].

Similarly, we can obtain the other time-evolving indicators of system (1.6) such as the convergence
of the time-evolving average number of customers to its static average number of customers.
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5. Numerical analysis

To prove the correctness of the exponential convergence results in this article, we perform numerical
analysis on the spectral results in Lemma 3.8. The numerical analysis results are shown in Figures 1
and 2. We obtain these numerical results using Matlab.

In Figure 1(a), we consider that system (1.6) only has the idle period and one operational phase,
that is, n = 1 in system (1.6). In other words, we consider the classical queuing model [5], and the point
spectrum results of the system operator Ag of this queueing model [5] are obtained in detail in [8—10].
If we take 4, = 0.1, u; = 0.9, then it is easy to see that /% =8 <land 2V — A —py = -04. In
addition, Figure 1(a) means that0 < &; < 1and O <n; < 1 forall y € (-0.4,0). Hence, by Eqs (3.34)
and (3.36), we see that every y € (—0.4,0) is the point spectrum of Ag.

In Figure 1(b), we consider that system (1.6) only has the idle period and two operational phases,
that is, n = 2 in system (1.6). In this case, we take 4; = 0.1, y; = 0.9 and 4, = 0.2, u, = 0.8.
Then, these values satisfy /’i—: = %, ;% = ‘1—‘, and max 1 {2 VAu; — A, — s} = —0.2. Moreover, when
v € (—0.2,0), from Figure 1(b) we see that &1, &, 11, and 1, satisfy 0 < &, < 1 and 0 < 15, < 1. Therefore,
by Eqs (3.34) and (3.36), we know that all y € (—0.2, 0) are the point spectrum of Ag. Figure 1 means
that the point spectrum results in Lemma 3.8 are correct if A; < u,, s = 1, 2. Therefore, the exponential
convergence result of Theorem 3.2 is valid.

— ——
h &

i M
1 = / 2
08

08

0.6
0.6

0.4
04

0.2 \ 0.2 .
e

0

0
g4 03 w0Z Sl g e JE 02 015 01 005 0 005 01 015

() Forn= 1,4, = 0.1, = 0.9. (b) Forn=2,2, = 0.1, = 0.9,1, = 0.2, > = 0.8.

Figure 1. For Lemma 3.8.

In the following, we check whether the condition A; < y;, 1 < s < nin Lemma 3.8 is necessary.
In Figure 2, we consider that system (1.6) only has the idle period and two operational phases, that
is, n = 2 in system (1.6). If we take 4; = 0.1, u; = 0.9 and 4, = 0.8, u, = 0.2, then we have 4, < y,
and A, > . In this case, Figure 2(a) means that 0 < &, <1, 0 <ny < 1,and & > 1, n, > 1 for all
v € (=0.2,0).

If we take 4; = 0.9, u; = 0.1 and 4, = 0.8, u, = 0.2, then we have A, > u,. In this case, Figure 2(b)
implies that &, > 1 and n,, > 1 for all y € (-0.2,0). Of course, we can choose some different 4,, and y,,
at least one of which satisfies A, > u,, for some so = 1,2,--- , n, to obtain the same conclusion. As a
result, Figure 2 means that we cannot obtain whether itis y € 0,(Ag), or even whether itis y € 0(Ag)
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under the above circumstances, where y € (max;<,<,{2 VAgus — As — i}, 0). Therefore, in Lemma 3.8 (or
in Theorem 3.2), we must consider the condition A; < u,. This condition is also the stability condition
obtained for system (1.6) in reference [3].

5 12
— —_—&
4.5 & 2]
4 T 0 h
2 2
e // 8
3
25 6
2
i /
1.5
,.,-———'-——"‘_—'_"_'_-— /
v . ——— 1
05 e
(,)072 015 01 005 0 0.05 0.1 015 (—}0,2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
(@) Forn=2,4,=0.1,; =0.9,1, = 0.8, 1, = 0.2. (b) Forn=2,4;, =09,u; =0.1,4, = 0.8, 4, = 0.2.

Figure 2. For Lemma 3.8.

6. Conclusions

In this article, we conduct a dynamic analysis of the M/G/1 queueing system with multiple phases
of operation. Using operator semigroup theory, we prove that there exists a unique time-evolving
solution for this system. We obtain the spectral distribution of the system operator on the imaginary axis
and prove that the system operator has an infinite number of eigenvalues on the left-half of the complex
plane. As a result, the above solution converges at most strongly to its static solution. We also discuss
the compactness of the system’s corresponding semigroup by using these spectral results. However, we
have not obtained the complete spectrum of the system operator on the left-half of the complex plane.
This is the work we will continue to do in the future. Additionally, we obtain that the dynamic queue
length of the model strongly converges to its static queue length.

The method described in this article can only be applied to queuing systems established using the
supplementary variable method and described by partial differential equations. For example, we cannot
use the method proposed in this paper for the queuing systems in [1,26,27].
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