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Abstract: In this paper, we considered the M/G/1 queueing system with multiple phases of operation.
First, we have proven the existence and uniqueness of the time-evolving solution for this queueing system.
Second, by calculating the spectral distribution of the system operator, we proved that the solution
converged at most strongly to its steady-state (static) solution. We also discussed the compactness of the
system’s corresponding semigroup. Additionally, we investigated the asymptotic behavior of dynamic
indicators. Finally, to demonstrate the exponential convergence of the solution, we conducted some
numerical analysis.
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1. Introduction

Queueing systems with multiple phases of operation are very useful in manufacturing systems,
transportation systems, financial systems, etc.; see [1–4]. For example, in automobile manufacturing,
raw materials first enter the stamping workshop for stamping and forming. Continuing with the welding
assembly in the welding workshop is the second stage, then carry out surface treatment such as painting,
is the third stage. Finally, the final assembly and quality inspection are carried out. In the airport
boarding process, passengers first queue up at the check-in counter to complete check-in procedures,
including checking in luggage. Then, queue up through the security checkpoint for security checks, is
the second stage. Finally, they queue up at the boarding gate to wait for boarding. In hospital medical
systems, patients first queue up at the registration counter to register. Then, the second stage is to go
to the waiting area of the corresponding department to queue up for the doctor’s diagnosis. If further
examinations are needed, such as blood tests, X-rays, etc., one needs to queue outside the examination
department to wait for the examination, which is the third stage. Finally, they take the examination
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results and return to the doctor for diagnosis or treatment, such as prescribing medication, intravenous
infusion, etc.

In this paper, we consider the M/G/1 queueing system with multiple phases of operation, where
M means that customer arrival follows a Poisson process, G represents the service rate of the server
follows a general distribution, 1 indicates the number of servers in the system. Therefore, the M/G/1
queue is a single-server queue where customers arrive according to a Poisson process, and service times
are independent and identically distributed general random variables. The process of establishing a
mathematical model for the queuing system is as follows:

There are n+ 1 phases in this system, 0 is the idle period, and s (s = 1, 2, · · · , n) are the operational
phases. We assume that N(t) denotes the number of customers in the system at time t, J(t) denotes the
phase in which the system operates at time t, Rs(t) (s = 1, 2, · · · , n) represents the elapsed service time
of the customer currently receiving service during phase s, Fs(x) = Prob{Rs(t) ≤ x} (s = 1, 2, · · · , n)
denotes the probability distribution function corresponding to Rs(t), and µs(x)dx is the service completion
rate of the server in the interval (x, x + dx] if the system is in phase s and satisfies µs(x) ≥ 0 and∫ ∞

0
µs(x)dx = ∞. The service time of the any two phases of service are mutually independent. Based on

the properties of conditional probability and differentiation, we have

µs(x)dx = Prob{x < Rs(t) ≤ x + dx
∣∣∣ Rs(t) > x} = −

d(1 − Fs(x))
1 − Fs(x)

.

Then, from this and Fs(0) = 0, we obtain the probability distribution function of the service time
of the server in the phase s,

Fs(x) = 1 − e−
∫ x

0 µs(τ)dτ.

According to the definition of probability distribution function, we know that Fs(x) ≥ 0 and
limx→∞ Fs(x) = 1. Therefore,

µs(x) ≥ 0,
∫ ∞

0
µs(x)dx = ∞.

We assume that, in phase s, the arrivals occur according to a Poisson process of rate λs > 0. In
the idle period, the Poisson arrival rate is λ0 > 0; upon arrival, the system moves to some operative
phase s with probability qs, and the customer service upon arrival begins immediately, where qs > 0 and∑n

s=1 qs = 1. Then, according to the definition of Poisson process and exponential distribution, we have

Prob{N(t) = k, J(t) = s} =
(λst)k

k!
e−λst, t ≥ 0, k ≥ 0, s = 0, 1, · · · , n, (1.1a)

Prob
{
arriving one customer within the ∆t time in phase s

}
= λs∆t + o(∆t), s = 1, 2, · · · , n,

(1.1b)

Prob
{
arriving two or more customers within the ∆t time in phase s

}
= o(∆t), s = 1, 2, · · · , n,

(1.1c)

Prob
{
the server completing one service within the ∆t time in phase s

}
= µs(x)∆t + o(∆t), s = 1, 2, · · · , n,

(1.1d)
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Prob
{
the server completing two or more services within the ∆t time in phase s

}
= o(∆t), s = 1, 2, · · · , n,

(1.1e)

where o(∆t) denotes the infinitesimal quantity of ∆t. Clearly, the process {(N(t), J(t),Rs(t)) : t ≥ 0} is a
continuous-time Markov process with state space

Γ = {(0, 0)} ∪ {(k, s, x) | k = 1, 2, · · · ; s = 1, 2, · · · , n, x ≥ 0}.

We define
p0,0(t) = Prob{N(t) = 0, J(t) = 0}, (1.2a)

pk,s(x, t)dx = Prob{N(t) = k, J(t) = s, x ≤ Rs(t) < x + dx}. (1.2b)

Then, consider the changes in the system during ∆t time. Based on the formula of total probability,
the properties of Markov processes, and the above Eqs (1.1a)–(1.2b), we have (for convenience, assuming
∆x is the same as ∆t)

p0,0(t + ∆t) = Prob
{

within the t + ∆t, no customers in the
system and the service desk being idle

}
= Prob

{
at time t, no customers in the system, during ∆t

no customers arriving and the system is idle

}

+Prob


at time t there is one customer in the system,

during ∆t no customers arriving, server
completing one service within ∆t in phase 1


+Prob


at time t there is one customer in the system,

during ∆t no customers arriving, server
completing one service within ∆t in phase 2


+ · · ·

+Prob


at time t there is one customer in the system,

during ∆t no customers arriving, server
completing one service within ∆t in phase n


+o(∆t)

= p0,0(t)(1 − λ0∆t) +
∫ ∞

0
p1,1(x, t)µ1(x)dx∆t(1 − λ1∆t)

+

∫ ∞

0
p1,2(x, t)µ2(x)dx∆t(1 − λ2∆t)

+ · · ·

+

∫ ∞

0
p1,n(x, t)µn(x)dx∆t(1 − λn∆t) + o(∆t),

(1.3a)
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p1,s(x + ∆t, t + ∆t)

= Prob


at time t + ∆t, there is one customer in the system,
the elapsed service time of the customer currently

receiving service during phase s is x + ∆t


= Prob


at time t, there is one customer in the system and the service

time that has passed is x, no customers arrived within
∆t and the server did not complete the service in phase s


+o(∆t)

= p1,s(x, t)(1 − λs∆t)(1 − µs(x)∆t) + o(∆t), , 1 ≤ s ≤ n,

(1.3b)

pk,s(x + ∆t, t + ∆t)

= Prob


at time t + ∆t, there are k customers in the system,
the elapsed service time of the customer currently

receiving service during phase s is x + ∆t


= Prob


at time t, there are k customers in the system and the service

time that has passed is x, no customers arrived within
∆t and the server did not complete the service in phase s


+Prob


at time t, there are k − 1 customers in the system and the
service time that has passed is x, one customer arrived in
∆t and the server did not complete the service in phase s

 + o(∆t)

= pk,s(x, t)(1 − λs∆t)(1 − µs(x)∆t) + pk−1,s(x, t)λs∆t(1 − µs(x)∆t)

+o(∆t), s = 1, 2, · · · , n; k ≥ 2.

(1.3c)

We consider the boundary conditions as follows:

p1,s(0, t + ∆t)∆t = Prob
{

at time t + ∆t, there is one customer in the system
in phase s and the service has not started yet

}

= Prob


at time t, the system is in idle state, but

has just reached one customer and the system
has jumped from idle state to phase s


+Prob


at time t, there are two customers in

the system in phase s and the server has
just completed one service within ∆t


+o(∆t)

= p0,0(t)qs∆t +
∫ ∞

0
p2,s(x, t)µs(x)dx∆t + o(∆t), , 1 ≤ s ≤ n,

(1.4a)
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pk,s(0, t + ∆t)∆t = Prob
{

at time t + ∆t, there are k customers in the system
in phase s and the service has not yet started

}

= Prob


at time t, there are k + 1 customers

in the system in phase s and the server
just completes one service within ∆t time

 + o(∆t)

=

∫ ∞

0
pk+1,s(x, t)µs(x)dx∆t + o(∆t), , 1 ≤ s ≤ n.

(1.4b)

Assume that the initial values

p0,0(0) = g0,0 ≥ 0, and pk,s(x, 0) = gk,s(x) ≥ 0, k ≥ 1, s = 1, 2, · · · , n, (1.5)

satisfy

g0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
gk,s(x)dx = 1.

Based on Eqs (1.2a)–(1.5) and the definition of partial differential derivatives, we obtain the
following integro-partial differential equations [3]:

dp0,0(t)
dt

= −λ0 p0,0(t) +
n∑

s=1

∫ ∞

0
p1,s(x, t)µs(x)dx,

∂t p1,s(x, t) + ∂x p1,s(x, t) = −[λs + µs(x)]p1,s(x, t),

∂t pk,s(x, t) + ∂x pk,s(x, t) = −[λs + µs(x)]pk,s(x, t) + λs pk−1,s(x, t), k ≥ 2,

p1,s(0, t) = qsλ0 p0,0(t) +
∫ ∞

0
p2,s(x, t)µs(x)dx,

pk,s(0, t) =
∫ ∞

0
pk+1,s(x, t)µs(x)dx, k ≥ 2,

p0,0(0) = g0,0 ≥ 0, pk,s(x, 0) = gk,s(x) ≥ 0, k ≥ 1, 1 ≤ s ≤ n.

(1.6)

In [3], several static indices for the system (1.6) such as the static queue length and static sojourn
time distribution of an arbitrary customer were developed under the following static hypothesis:

• limt→∞ p0,0(t) = p0,0,
• limt→∞ pk,s(·, t) = pk,s(·), k ≥ 1, 1 ≤ s ≤ n.

From the perspective of partial differential equations, the above hypothesis implies the following
two hypotheses:

• (H1): The system (1.6) admits a time-evolving solution.
• (H2): The aforementioned time-evolving solution converges to its static.

In this article, we investigate the aforementioned static hypothesis, that is, (H1) and (H2), and
consider the asymptotic behavior of the dynamic indices of the system (1.6). It is worth noting that when
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n = 1, system (1.6) becomes the classical M/G/1 queuing system [5], and a detailed dynamic analysis of
this classical queuing system was conducted in [6–10]. Gupur et al. [6] studied the well-posedness of
the queueing system [5] and obtained the strong convergence of the solution of the system when the
service rate is constant. When the service rate is a bounded function, similar results to [6] are obtained
by [7]. In [8–10], the exponential convergence of the solution of the queueing system [5] was studied.
Therefore, our results include the above findings.

In the study of partial differential equations, many solutions of partial differential equations can
function as semigroups in Banach space. By studying the properties of semigroups, important properties
such as the existence, uniqueness, and stability of solutions to partial differential equations can be
obtained; see [11–15]. In this article, first, we convert the system (1.6) into an abstract Cauchy problem
in a natural state Banach space. Then, using the semigroup theory on Banach spaces, we show that the
system operator generates a positive C0−semigroup of contractions on the state space. Consequently,
we verify that the system (1.6) admits a unique positive time-evolving solution, which shows that (H1)
holds under certain conditions.

Second, we investigate the asymptotic behavior of the solution. To this aim, we need to know the
spectrum of the system operator; see [16–18]. For example, in order to study the asymptotic stability
of multilayer thermal wave systems, Avalos et al. [16] conducted spectral analysis on the system and
found that the system operator had no spectral points on the imaginary axis. Drogoul and Veltz [17]
proved that 0 is the unique spectral point of the spike neural network operator on the imaginary axis,
thus obtaining the exponential stability of the system. In [18], it was proved that 0 is the point spectrum
of the system operator of the queuing system and is the unique spectral point, thus obtaining the solution
corresponding to this queuing system that strongly converges to its static solution.

Moreover, it is a challenge to find spectrum on the imaginary axis. Here, we apply Greiner’s [19]
boundary perturbation method to fully describe the spectral distribution of the system operator on
the imaginary axis. If the service rates are constants, then we obtain that the system operator of the
system (1.6) has uncountable eigenvalues on the left-half complex plane. Consequently, these spectral
results imply that the time-evolving solution of system (1.6) at most strongly converges to its static
solution. In other words, (H2) holds only in the context of strong convergence.

Finally, we discuss the asymptotic behavior of the dynamic indices of the system (1.6). By
using cone theory and positive operator theory, we prove that the time-evolving queue length of the
system (1.6) converges to its static queue length under some conditions. This asymptotic result includes
the result of [3].

The remaining part of this article is organized as follows. In the next section, we rewrite the
system (1.6) as an abstract Cauchy problem in a Banach space and provide the well-posedness. In
Section 3, we provide a complete asymptotic behavior of the solution of system (1.6). In Section 4, we
discuss the dynamic indices of the system (1.6). To demonstrate the exponential convergence of the
solution, we conduct some numerical analysis in Section 5. We conclude this article in the last section.

2. Well-posedness

We choose the state Banach space of system (1.6) as follows:
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X =

(p1, p2, · · · , pn)

∣∣∣∣∣∣∣∣∣
p1 = (p0,0, p1,1, p2,1, · · · ), ps = (p1,s, p2,s, · · · ), 2 ≤ s ≤ n,
p0,0 ∈ R, pk,s ∈ L1[0,∞), ∥(p1, p2, · · · , pn)∥
= |p0,0| +

∑n
s=1

∑∞
k=1 ∥pk,s∥L1[0,∞) < ∞

 .
Define the maximal operator of the system (1.6) by

Am(p1, p2, · · · , pn)

=





−λ0 p0,0 +
∑n

s=1 φs p1,s

B1 p1,1

λ1 p1,1 + B1 p2,1

λ1 p2,1 + B1 p3,1
...


,



B2 p1,2

λ2 p1,2 + B2 p2,2

λ2 p2,2 + B2 p3,2

λ2 p3,2 + B2 p4,2
...


, · · · ,



Bn p1,n

λn p1,n + Bn p2,n

λn p2,n + Bn p3,n

λn p3,n + Bn p4,n
...




,

with domain

D(Am) =

(p1, p2, · · · , pn) ∈ X |
dpk,s

dx
∈ L1[0,∞),

n∑
s=1

∞∑
k=1

∥∥∥∥∥dpk,s

dx

∥∥∥∥∥
L1[0,∞)

< ∞

 ,
where pk,s are absolutely continuous functions, k ≥ 1, 1 ≤ s ≤ n, and

Bsv = −
dv(x)

dx
− [λs + µs(x)]v(x), v ∈ W1,1[0,∞),

φs f =
∫ ∞

0
f (x)µs(x)dx, f ∈ L1[0,∞).

We choose the boundary space as ∂X = l1 × l1 × · · · × l1︸             ︷︷             ︸
n

and define boundary operators Ψ,Φ :

D(Am)→ ∂X of the system (1.1a) by

Ψ(p1, p2, · · · , pn) =



p1,1(0)
p2,1(0)
...

 ,

p1,2(0)
p2,2(0)
...

 , · · · ,

p1,n(0)
p2,n(0)
...


 ,

Φ(p1, p2, · · · , pn)

=



q1λ0 p0,0 + φ1 p2,1

φ1 p3,1

φ1 p4,1
...

 ,

q2λ0 p0,0 + φ2 p2,2

φ2 p3,2

φ2 p4,2
...

 , · · · ,

qnλ0 p0,0 + φn p2,n

φn p3,n

φn p4,n
...


 .

Now, we introduce the system operator (AΦ,D(AΦ)) of the system (1.6) by AΦ(p1, p2, · · · , pn) = Am(p1, p2, · · · , pn),

D(AΦ) = {(p1, p2, · · · , pn) ∈ D(Am)|Ψ(p1, p2, · · · , pn) = Φ(p1, p2, · · · , pn)}.
(2.1)
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Then, the system (1.6) can be written as an abstract Cauchy problem in the Banach space X:
d(p1, p2, · · · , pn)(·, t)

dt
= AΦ(p1, p2, · · · , pn)(·, t), t ∈ (0,∞),

(p1, p2, · · · , pn)(·, 0) = (g1(·), g2(·), · · · , gn(·)),
(2.2)

where g1(·) = (g0,0, g1,1(·), g2,1(·), · · · ), gs(·) = (g1,s(·), g2,s(·), · · · ), s = 2, 3, · · · , n.

Theorem 2.1. Let AΦ be defined by Eq (2.1). If µs(x) ≤ µs = supx∈[0,∞) µs(x) < ∞ (1 ≤ s ≤ n), then AΦ
generates a positive C0−semigroup eAΦt of contractions on X.

Proof. For self contained and conciseness, we only sketch the proof of Theorem 2.1. To start, we
divided operator AΦ into three parts AΦ = A + U + E , where

A(p1, · · · , pn) =



−λ0 p0,0

−
dp1,1

dx
−

dp2,1

dx
...

 ,

−

dp1,2(x)
dx

−
dp2,2(x)

dx
−

dp3,2(x)
dx
...

 , · · · · · · ,

−

dp1,n(x)
dx

−
dp2,n(x)

dx
−

dp3,n(x)
dx
...


 ,

D(A) =

(p1, · · · , pn) ∈ X

∣∣∣∣∣∣∣∣∣
dpk,s(x)

dx ∈ L1[0,∞), pk,s(x) are absolutely
continuous functions and ps(0) = Γ0,s p1

+
∫ ∞

0
Γ1,s psdx, k ≥ 1; 1 ≤ s ≤ n

 ,
where

Γ1,1 =


e−x 0 0 0 · · ·

q1λ0e−x 0 µ1 0 · · ·

0 0 0 µ1 · · ·
...

...
...
...
. . .

 ,

Γ0,s =


qsλ0 0 · · ·

0 0 0 · · ·
...
...
...
. . .

 , Γ1,s =


0 µs 0 · · ·

0 0 µs · · ·

0 0 0 · · ·
...
...
...
. . .

 , 2 ≤ s ≤ n.

U(p1, · · · , pn) =





0
−(λ1 + µ1)p1,1(x)

−(λ1 + µ1)p2,1(x) + λ1 p1,1(x)
−(λ1 + µ1)p3,1(x) + λ1 p2,1(x)

...


,


−(λ2 + µ2)p1,2(x)

−(λ2 + µ2)p2,2(x) + λ2 p1,2(x)
−(λ2 + µ2)p3,2(x) + λ2 p2,2(x)

...

 , · · · · · · ,


−(λn + µn)p1,n(x)
−(λn + µn)p2,n(x) + λn p1,n(x)
−(λn + µn)p3,n(x) + λn p2,n(x)

...


 ,

E(p1, · · · , pn) =


∑n

s=1 µs

∫ ∞
0

p1,s(x)dx
0
...

 ,
Networks and Heterogeneous Media Volume 19, Issue 3, 1231–1261.
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D(U) = X, D(E) = X.

We can verify that ∥(γI − A)−1∥ < 1
γ−M0

for all γ > M0 = max{µ1, µ2, · · · , µn}, where I represents
the identity operator. Moreover, it is easy to prove that D(A) is dense in X. Then, using the Helle-Yosida
theorem (see [20, Theorem 4.20]), we obtain that A generates a C0−semigroup. Due to the operators U
and E being linear bounded, with perturbation theory of the semigroup, we know that AΦ generates a
C0−semigroup eAΦt. Thus, we complete the proof of this theorem.

Next, we investigate the isometry of eAΦt. It is easy to obtain that X∗, the dual space of X, is
as follows:

X∗ =

(p∗1, · · · , p
∗
n)

∣∣∣∣∣∣∣∣∣
p∗1 = (p∗0,0, p

∗
1,1, p

∗
2,1, · · · ), p

∗
s = (p∗1,s, p

∗
2,s, · · · ), 2 ≤ s ≤ n,

p∗0,0 ∈ R, p∗k,s ∈ L∞[0,∞), ∥(p∗1, · · · , p
∗
n)∥

= sup
{
sup |p∗0,0|, sup k≥1

1≤s≤n
∥p∗k,s∥L∞[0,∞)

}
< ∞

 .
If we take a set X+ = {(p1, p2, · · · , pn) ∈ X | p0,0 ≥ 0, pk,s(·) ≥ 0, k ≥ 1, 1 ≤ s ≤ n} in X, then,

Theorem 2.1 ensures eAΦtX+ ⊂ X+. Now, for any (p1, p2, · · · , pn) ∈ D(AΦ) ∩ X+, we choose

(p∗1, p
∗
2, · · · , p

∗
n) = ∥(p1, p2, · · · , pn)∥

1...
 , 1...

 , · · · , 1...
 .

It is not difficult to calculate that for (p∗1, p
∗
2, · · · , p

∗
n) ∈ X∗ and (p1, p2, · · · , pn) ∈ X+, we have

⟨(p1, p2, · · · , pn), (p∗1, p
∗
2, · · · , p

∗
n)⟩

= ∥(p1, p2, · · · , pn)∥

p0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x)dx

 = ∥(p1, p2, · · · , pn)∥2.

This shows that (p∗1, p
∗
2, · · · , p

∗
n) ∈ Q(p1, p2, · · · , pn), where

Q(p1, p2, · · · , pn) =

(p∗1, p
∗
2, · · · , p

∗
n) ∈ X∗

∣∣∣∣∣∣∣∣∣
⟨(p1, p2, · · · , pn), (p∗1, p

∗
2, · · · , p

∗
n)⟩

= ∥(p1, p2, · · · , pn)∥2

= ∥(p∗1, p
∗
2, · · · , p

∗
n)∥2

 .
In addition, we obtain for (p1, p2, · · · , pn) ∈ D(AΦ) and (p∗1, p

∗
2, · · · , p

∗
n) ∈ Q(p1, p2, · · · , pn) that

⟨AΦ(p1, p2, · · · , pn), (p∗1, p
∗
2, · · · , p

∗
n)⟩ = ∥(p1, p2, · · · , pn)∥

×

−λ0 p0,0 +

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx +

n∑
s=1

∞∑
k=2

∫ ∞

0
λs pk−1,s(x)dx

+

n∑
s=1

∞∑
k=1

∫ ∞

0

[
−

dpk,s(x)
dx

− (λs + µs(x))pk,s(x)
]

dx

 = 0. (2.3)

Then, Eq (2.3) implies that AΦ is conservative with respect to Q(·). Theorem 3.6.1 of [21]
stated that: Assume that AΦ is densely defined, conservative with respect to Q(·) : D(AΦ) → X∗ and
(γI − AΦ)D(AΦ) = X for some γ > 0. Then, for some g ∈ D((AΦ)2) , the corresponding semigroup to
Cauchy problem (2.2) is isometric. Hence, we obtain the following result.
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Theorem 2.2. Let µs(·) satisfy µs(x) ≤ supx∈[0,∞) µs(x) < ∞, 1 ≤ s ≤ n. If the initial value
(p1, p2, · · · , pn)(·, 0) = (g1(·), g2(·), · · · , gn(·)) of the system (2.2) belongs to D(A2

Φ
), then semigroup

eAΦt is isometric for (g1(·), g2(·), · · · , gn(·)). That is,

∥eAΦt(g1(·), g2(·), · · · , gn(·))∥ = ∥(g1(·), g2(·), · · · , gn(·))∥, t ∈ [0,∞). (2.4)

By combining Theorems 2.1 and 2.2, we obtain the main result in this section.

Theorem 2.3. Let µs(·) satisfy µs(x) ≤ supx∈[0,∞) µs(x) < ∞, 1 ≤ s ≤ n. If the initial value
(g1(·), g2(·), · · · , gn(·)) of system (2.2) belongs to D(A2

Φ
), then system (2.2) admits a unique positive

time-evolving solution (p1(·, t), p2(·, t), · · · , pn(·, t)) which satisfies

∥(p1(·, t), p2(·, t), · · · , pn(·, t))∥ = 1, ∀t ∈ [0,∞). (2.5)

Proof. Due to (g1(·), g2(·), · · · , gn(·)) ∈ D(A2
Φ

) and (g1(·), g2(·), · · · , gn(·)) ∈ X+, it is easy to see that
(g1(·), g2(·), · · · , gn(·)) ∈ D(A2

Φ
) ∩ X+. By Theorem 1.81 of [12], we see that the system (1.6) has a

unique positive time-evolving solution (p1(·, t), p2(·, t), · · · , pn(·, t)), which can be expressed as

(p1(·, t), p2(·, t), · · · , pn(·, t)) = eAΦt(g1(·), g2(·), · · · , gn(·)), ∀t ∈ [0,∞). (2.6)

From this together with Eq (2.5), we obtain

∥(p1(·, t), p2(·, t), · · · , pn(·, t))∥ = ∥eAΦt(g1(·), g2(·), · · · , gn(·))∥ = 1, ∀t ∈ [0,∞). (2.7)

This illustrates the physical meaning of (p1(·, ·), p2(·, ·), · · · , pn(·, ·)).

3. Asymptotic behavior of the time-evolving solution

In this section, our main objective is to address the issue of asymptotic behavior of the time-
evolving solution that we stated in Eq (2.6). In this regard, we prove that the time-evolving solution of
the system (1.6) strongly converges but not exponentially converges to its static solution. In other words,
hypothesis (H2) holds only in the context of strong convergence.

3.1. Strong convergence of the time-evolving solution

The main result of this subsection is given by the following Theorem 3.1.

Theorem 3.1. Let µs(x) : [0,∞)→ [0,∞) be a measurable function that satisfies

0 < inf
x∈[0,∞)

µs(x) ≤ µs(x) ≤ sup
x∈[0,∞)

µs(x) < ∞, 1 ≤ s ≤ n.

Then, the time-evolving solution of the system (2.2) strongly converges to its static solution. In
other words,

lim
t→∞
∥(p1, p2, · · · , pn)(·, t) − ⟨(p∗1, p

∗
2, · · · , p

∗
n), (g1, g2, · · · , gn)⟩(p1, p2, · · · , pn)(·)∥ = 0,

where (p∗1, p
∗
2, · · · , p

∗
n) and (p1, p2, · · · , pn) are the eigenvectors associated to zero, respectively.

To prove the above Theorem 3.1, we need to find the spectra of AΦ along the imaginary axis. For
this, we first provide the following seven lemmas.
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Lemma 3.1. Let AΦ be defined by Eq (2.1). If µs(x) : [0,∞) → [0,∞) is measurable function
that satisfies

0 < µ
s
= inf

x∈[0,∞)
µs(x) ≤ µs(x) ≤ µs = sup

x∈[0,∞)
µs(x) < ∞, 1 ≤ s ≤ n,

then, zero is an eigenvalue of AΦ with geometric multiplicity one.

Proof. We need to solve AΦ(p1, p2, · · · , pn) = 0 for unknown (p1, p2, · · · , pn). This equation is equiva-
lent to

λ0 p0,0 =

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx, (3.1a)

dp1,s(x)
dx

= −[λs + µs(x)]p1,s(x), (3.1b)

dpk,s(x)
dx

= −[λs + µs(x)]pk,s(x) + λs pk−1,s(x), k ≥ 2, (3.1c)

p1,s(0) = qsλ0 p0,0 +

∫ ∞

0
p2,s(x)µs(x)dx, (3.1d)

pk,s(0) =
∫ ∞

0
pk+1,s(x)µs(x)dx, k ≥ 2. (3.1e)

Solve Eqs (3.1b) and (3.1c) to obtain

pk,s(x) = e−λs x−
∫ x

0 µs(τ)dτ
k∑

j=1

(λsx) j−1

( j − 1)!
pk− j+1,s(0), k ≥ 1. (3.2)

If we take pk,s(0) = 2−(k+1) p1,s(0), p1,s(0) = qsλ0 p0,0 > 0 and define

ck,s :=
∫ ∞

0

(λsx)k

k!
e−λs x−

∫ x
0 µs(τ)dτdx, dk,s :=

∫ ∞

0
µs(x)

(λsx)k

k!
e−λs x−

∫ x
0 µs(τ)dτdx, k ≥ 1,

then pk,s(0) = 2−(k+1) p1,s(0) satisfies the boundary conditions (3.1d) and (3.1e). Therefore, since the
Cauchy product of series, the formula

∫ ∞
0
µs(x)e−

∫ x
0 µs(ξ)dξdx = 1, and

n∑
s=1

∞∑
k=1

pk,s(0) = λ0q0,0,

∞∑
k=1

ck,s =

∫ ∞

0
e−

∫ x
0 µs(τ)dτdx,

∞∑
k=1

dk,s = 1,

we have
n∑

s=1

∞∑
k=1

∫ ∞

0
|pk,s(x)|dx =

n∑
s=1

∞∑
k=1

k∑
j=1

c j,s pk− j+1,s(0)

= λ0 p0,0

∫ ∞

0
e−

∫ x
0 µs(τ)dτdx ≤

λ0

µ
s

p0,0 < ∞.

(3.3)

Eq (3.3) means that zero is an eigenvalue of AΦ. Moreover, by Eqs (3.1a) and (3.1d)–(3.2), we see
that the geometric multiplicity of zero is one.
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Now, we use the idea of [19] to describe the other spectrum of AΦ along the imaginary axis. For
this objective, we define the operator (A0,D(A0)) by

 A0(p1, p2, · · · , pn) = Am(p1, p2, · · · , pn),

D(A0) = {(p1, p2, · · · , pn) ∈ D(Am)|Ψ(p1, p2, · · · , pn) = 0}.

and discuss the inverse of A0.
For given (y1, y2, · · · , yn) ∈ X, consider (γI − A0)(p1, p2, · · · , pn) = (y1, y2, · · · , yn) of unknown

(p1, p2, · · · , pn) ∈ D(A0). This equation can be equivalently written as the following system of equations

(γ + λ0)p0,0 = y0,0 +

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx, (3.4a)

dp1,s(x)
dx

= −[γ + λs + µs(x)]p1,s(x) + y1,s(x), (3.4b)

dpk,s(x)
dx

= −[γ + λs + µs(x)]pk,s(x) + λs pk−1,s(x) + yk,s(x), k ≥ 2, (3.4c)

pk,s(0) = 0, k ≥ 1; 1 ≤ s ≤ n. (3.4d)

By solving Eqs (3.4a)–(3.4c) and using Eq (3.4d), we obtain

p1,s(x) = e−(γ+λs)x−
∫ x

0 µs(τ)dτ
∫ x

0
y1,s(τ)e(γ+λs)τ+

∫ τ
0 µs(ξ)dξdτ, (3.5a)

pk,s(x) = e−(γ+λs)x−
∫ x

0 µs(τ)dτ
∫ x

0
yk,s(τ)e(γ+λs)τ+

∫ τ
0 µs(ξ)dξdτ

+λse−(γ+λs)x−
∫ x

0 µs(τ)dτ
∫ x

0
pk−1,s(τ)e(γ+λs)τ+

∫ τ
0 µs(ξ)dξdτ, k ≥ 2,

(3.5b)

p0,0 =
1

γ + λ0
y0,0 +

1
γ + λ0

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx

=
1

γ + λ0
y0,0 +

1
γ + λ0

n∑
s=1

∫ ∞

0
µs(x)

×
[
e−(γ+λs)x−

∫ x
0 µs(τ)dτ

∫ x

0
y1,s(τ)e(γ+λs)τ+

∫ τ
0 µs(ξ)dξdτ

]
dx.

(3.5c)

Denoting by

Es f (x) = e−(γ+λs)x−
∫ x

0 µs(τ)dτ
∫ x

0
f (τ)e(γ+λs)τ+

∫ τ
0 µs(ξ)dξdτ, f ∈ L1[0,∞), (3.6)
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then the Eqs (3.5a)–(3.5c) and φs f (x) =
∫ ∞

0
f (x)µs(x)dx, f ∈ L1[0,∞) give, if the resolvent of A0 exists,

(γI − A0)−1(y1, y2, · · · , yn)

=




1
γ+λ0

∑n
s=1 φsEsy1,s(x)

0
...

 +


1
γ+λ0

0 0 0 · · ·

0 E1 0 0 · · ·

0 λ1E2
1 E1 0 · · ·

0 λ2
1E3

1 λ1E2
1 E1 · · ·

...
...

...
. . .





y0,0

y1,1(x)
y2,1(x)
y3,1(x)
...


,


E2 0 0 · · ·

λ2E2
2 E2 0 · · ·

λ2
2E3

2 λ2E2
2 E2 · · ·

...
...
. . .



y1,2(x)
y2,2(x)
y3,2(x)
...

 , · · · ,


En 0 0 · · ·

λnE2
n En 0 · · ·

λ2
nE3

n λnE2
n En · · ·

...
...
. . .



y1,n(x)
y2,n(x)
y3,n(x)
...


 .

(3.7)

The following Lemma 3.2 indicates the resolvent set ρ(A0) of A0.

Lemma 3.2. Let µs(x) : [0,∞)→ [0,∞) be a measurable function that satisfies

0 < µ
s
= inf

x∈[0,∞)
µs(x) ≤ µs(x) ≤ µs = sup

x∈[0,∞)
µs(x) < ∞, 1 ≤ s ≤ n.

Then, {γ ∈ C | Re(γ) + λ0 > 0,Re(γ) + µ
s
> 0} ⊂ ρ(A0).

Proof. For all f ∈ L1[0,∞), by performing integration by parts to Eq (3.6), it is easy to obtain that Es

satisfies the following inequality:

∥Es∥ ≤
1

Re(γ) + λs + µs

.

Then, using the inequality ∥φs∥ ≤ supx∈[0,∞) µs(x), we calculate for any (y1, y2, · · · , yn) ∈ X that

∥(γI − A0)−1(y1, y2, · · · , yn)∥

≤
1

Re(γ) + λ0
|y0,0| +

1
Re(γ) + λ0

n∑
s=1

∥φs∥∥Es∥∥y1,s∥L1[0,∞)

+

∞∑
k=1

λk−1
1 ∥E1∥

k
∞∑
j=1

∥y j,1∥L1[0,∞) +

∞∑
k=1

λk−1
2 ∥E2∥

k
∞∑
j=1

∥y j,2∥L1[0,∞) + · · ·

+

∞∑
k=1

λk−1
n ∥En∥

k
∞∑
j=1

∥y j,n∥L1[0,∞)

≤
1

Re(γ) + λ0
|y0,0| +

1
Re(γ) + λ0

n∑
s=1

µs

Re(γ) + λs + µs

∥y1,m∥L1[0,∞)

+
1

Re(γ) + λ1 + µ1

∞∑
k=1

 λ1

Re(γ) + λ1 + µ1

k−1 ∞∑
j=1

∥y j,1∥L1[0,∞)

+
1

Re(γ) + λ2 + µ2

∞∑
k=1

 λ2

Re(γ) + λ2 + µ2

k−1 ∞∑
j=1

∥y j,2∥L1[0,∞) + · · ·
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+
1

Re(γ) + λn + µn

∞∑
k=1

 λn

Re(γ) + λn + µn

k−1 ∞∑
j=1

∥y j,n∥L1[0,∞)

=
1

Re(γ) + λ0
|y0,0| +

1
Re(γ) + λ0

n∑
s=1

µs

Re(γ) + λs + µs

∥y1,s∥L1[0,∞)

+

n∑
s=1

1
Re(γ) + µ

s

∞∑
j=1

∥y j,s∥L1[0,∞)

≤ sup

 1
Re(γ) + λ0

+
1

Re(γ) + λ0

µ1

Re(γ) + λ1 + µ1

+
1

Re(γ) + µ
1

,

1
Re(γ) + λ0

µ2

Re(γ) + λ2 + µ2

+
1

Re(γ) + µ
2

, · · · ,

1
Re(γ) + λ0

µn

Re(γ) + λn + µn

+
1

Re(γ) + µ
n

 ∥(y1, y2, · · · , yn)∥. (3.8)

That is, inequality (3.8) means that the result of this lemma is correct.

Next, we use the following Lemma 3.3 to provide a specific expression for the Dirichlet operator.

Lemma 3.3. Let γ ∈ {γ ∈ C | Re(γ) + λ0 > 0,Re(γ) + µ
s
> 0}. Then, we have (p1, p2, · · · , pn) ∈

ker(γI − Am) if, and only if,

p0,0 =
1

γ + λ0

n∑
s=1

p1,s(0)
∫ ∞

0
µs(x)e−(γ+λs)x−

∫ x
0 µs(τ)dτdx, (3.9a)

pk,s(x) = e−(γ+λs)x−
∫ ∞

0 µs(τ)dτ
k∑

j=1

(λsx) j−1

( j − 1)!
pk− j+1,s(0), k ≥ 1, (3.9b)

ps(0) = (p1,s(0), p2,s(0), p3,s(0), · · · ) ∈ l1, 1 ≤ s ≤ n. (3.9c)

Proof. If (p1, p2, · · · , pn) ∈ ker(γI − Am), then (γI − Am)(p1, p2, · · · , pn) = 0, that is,

(γ + λ0)p0,0 =

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx, (3.10a)

dp1,s(x)
dx

= −[γ + λs + µs(x)]p1,s(x), (3.10b)

dpk,s(x)
dx

= −[γ + λs + µs(x)]pk,s(x) + λs pk−1,s(x). (3.10c)

By solving Eqs (3.10a)–(3.10c), we obtain

pk,s(x) = e−(γ+λs)x−
∫ x

0 µs(τ)dτ
k∑

j=1

(λsx) j−1

( j − 1)!
pk− j+1,s(0), k ≥ 1, (3.11a)
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p0,0 =
1

γ + λ0

n∑
s=1

p1,s(0)
∫ ∞

0
µs(x)e−(γ+λs)x−

∫ x
0 µs(τ)dτdx. (3.11b)

Since (p1, p2, · · · , pn) ∈ ker(γI − Am), according to the Sobolev embedding theorem [22], we can
easily obtain

∞∑
k=1

|pk,s(0)| ≤
∞∑

k=1

∥pk,s∥L∞[0,∞)

≤

∞∑
k=1

(
∥pk,s∥L1[0,∞) +

∥∥∥∥∥dpk,s

dx

∥∥∥∥∥
L1[0,∞)

)
< ∞.

(3.12)

Hence, Eqs (3.11a)–(3.12) show that Eqs (3.9a)–(3.9c) are true.
On the other hand, if Eqs (3.9a)–(3.9c) hold, due to the formula∫ ∞

0
e−cxxkdx = c−(k+1)k!

it holds true for any c > 0 and positive integer k ≥ 1, and performing integration by parts, we deduce

∥pk,s∥L1[0,∞) ≤

∫ ∞

0
e−(Re(γ)+λs)x−

∫ x
0 µs(τ)dτ

k∑
j=1

(λsx) j−1

( j − 1)!
|pk− j+1,s(0)|dx

≤

k∑
j=1

λ
j−1
s

( j − 1)!
|pk− j+1,s(0)|

∫ ∞

0
x j−1e−[Re(γ)+λs+infx∈[0,∞) µs(x)]xdx

=

k∑
j=1

λ
j−1
s

[Re(γ) + λs + µs
] j |pk− j+1,s(0)|.

Then, by the Cauchy product of series, we calculate that

∞∑
k=1

∥pk,s∥L1[0,∞) ≤

∞∑
k=1

k∑
j=1

λ
j−1
s

[Re(γ) + λs + µs
] j |pk− j+1,s(0)|

=
1

Re(γ) + λs + µs

∞∑
j=1

 λs

Re(γ) + λs + µs

 j−1 ∞∑
k=1

|pk,s(0)|

=
1

Re(γ) + µ
s

∞∑
k=1

|pk,s(0)| < ∞,

(3.13)

for any γ > −µ
s
. Inequalities (3.12) and (3.13) show that (p1, p2, · · · , pn) ∈ X. In addition, by Eq (3.9b),

we have
dp1,s(x)

dx
= −[γ + λs + µs(x)]p1,s(0)e−(γ+λs)x−

∫ x
0 µs(τ)dτ

= −[γ + λs + µs(x)]p1,s(x),
(3.14a)
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dpk,s(x)
dx

= −[γ + λs + µs(x)]e−(γ+λs)x−
∫ x

0 µs(τ)dτ
k∑

j=1

(λsx) j−1

( j − 1)!
pk− j+1,s(0)

+λse−(γ+λs)x−
∫ x

0 µs(τ)dτ
k−1∑
j=1

(λsx) j−1

( j − 1)!
pk− j,s(0)

= −[γ + λs + µs(x)]pk,s(x) + λs pk−1,s(x), k ≥ 2.

(3.14b)

Combining the above Eqs (3.14a) and (3.14b) with inequality (3.13), we obtain

∞∑
k=1

∥∥∥∥∥dpk,s

dx

∥∥∥∥∥
L1[0,∞)

≤

(
|γ| + 2λs + sup

x∈[0,∞)
µs(x)

) ∞∑
k=1

∥pk,s∥L1[0,∞) < ∞.

This inequality implies that
n∑

s=1

∞∑
k=1

∥∥∥∥∥dpk,s

dx

∥∥∥∥∥
L1[0,∞)

< ∞. (3.15)

Hence, Eqs (3.13)–(3.15) indicate that (p1, p2, · · · , pn) ∈ D(Am) and

(γI − Am)(p1, p2, · · · , pn) = 0.

Clearly, by the definition it is not difficult to show that the boundary operator Ψ is surjective. In
addition, for all γ ∈ ρ(A0), the operator

Ψ
∣∣∣
ker(γI−Am)

: ker(γI − Am)→ ∂X,

is invertible. Now, for any γ ∈ ρ(A0), we introduce the Dirichlet operator by

Dγ :=
(
Ψ
∣∣∣
ker(γI−Am)

)−1
: ∂X → ker(γI − Am).

Then, using Lemma 3.3, for any γ ∈ ρ(A0), we can obtain the following specific expression for Dγ:

Dγ(p1(0), p2(0), · · · , pn(0))

=





1
γ+λ0

∑n
s=1 p1,s(0)φsε1,s

0
0
0
...


+



0 0 0 0 · · ·

ε1,1 0 0 0 · · ·

ε2,1 ε1,1 0 0 · · ·

ε3,1 ε2,1 ε1,1 0 · · ·
...

...
...
...
. . .





p1,1(0)
p2,1(0)
p3,1(0)
p4,1(0)
...


,


ε1,2 0 0 · · ·

ε2,2 ε1,2 0 · · ·

ε3,2 ε2,2 ε1,2 · · ·
...

...
...
. . .



p1,2(0)
p2,2(0)
p3,2(0)
...

 , · · · ,

ε1,n 0 0 · · ·

ε2,n ε1,n 0 · · ·

ε3,n ε2,n ε1,n · · ·
...

...
...
. . .



p1,n(0)
p2,n(0)
p3,n(0)
...


 ,

(3.16)

where

ε j,s =
(λsx) j−1

( j − 1)!
e−(γ+λs)x−

∫ x
0 µs(τ)dτ, j ≥ 1, 1 ≤ s ≤ n.

Networks and Heterogeneous Media Volume 19, Issue 3, 1231–1261.



1247

Finally, using the expression of Dirichlet operator (3.16) and the boundary operator Φ, we can
calculate the specific expression of ΦDγ as follows:

ΦDγ(p1(0), p2(0), · · · , pn(0)) = (J1, J2, · · · , Jn)(p1(0), p2(0), · · · , pn(0)), (3.17)

where

Jk =


qkλ0
γ+λ0

∑n
s=1 p1,s(0)φsε1,s

0
0
...

 +

φkε2,k φkε1,k 0 · · ·

φkε3,k φkε2,k φkε1,k · · ·

φkε4,k φkε3,k φkε2,k · · ·
...

...
...

. . .



p1,k(0)
p2,k(0)
p3,k(0)
...

 , 1 ≤ k ≤ n.

The following Lemma 3.4 was found in [23], and we use this lemma along with the above results
in this subsection to provide spectrum σ(AΦ) of AΦ on the imaginary axis.

Lemma 3.4. Assume γ ∈ ρ(A0). If there exists γ0 that satisfies 1 < σ(ΦDγ0), then γ ∈ σ(AΦ) if, and only
if, 1 ∈ σ(ΦDγ).

Lemma 3.5. Let AΦ be defined by Eq (2.1). If µs(x) : [0,∞) → [0,∞) is a measurable function
that satisfies

0 < inf
x∈[0,∞)

µs(x) ≤ µs(x) ≤ sup
x∈[0,∞)

µs(x) < ∞, 1 ≤ s ≤ n,

then, we have iR ∩ σ(AΦ) = {0}, i2 = −1.

Proof. If we take γ = ib, i2 = −1, b ∈ R \ {0}, then applying the Riemann-Lebesgue lemma, we obtain
that there existsM > 0 that satisfies∣∣∣∣∣∣

∫ ∞

0
µs(x)

(λsx)k−1

(k − 1)!
e−(ib+λs)x−

∫ x
0 µs(τ)dτdx

∣∣∣∣∣∣ <
∫ ∞

0
µs(x)

(λsx)k−1

(k − 1)!
e−λs x−

∫ x
0 µs(τ)dτdx, (3.18)

for all |b| > M. Hence, using inequality (3.18) and the formulas
∑n

s=1 qs = 1 and∫ ∞

0
µs(x)e−

∫ x
0 µs(τ)dτdx = 1,

we calculate for ps(0) = (p1,s(0), p2,s(0), p3,s(0), · · · ) ∈ l1 \ {0} that

∥ΦDib(p1(0), p2(0), · · · , pn(0))∥ ≤
λ0√

b2 + λ2
0

n∑
s=1

|p1,s(0)||φsε1,s|

+

n∑
s=1

∞∑
k=2

|φsεk,s||p1,s(0)| +
n∑

s=1

∞∑
k=1

|φsεk,s|

∞∑
j=2

|p j,s(0)|

<

n∑
s=1

∞∑
k=1

|φsεk,s|

∞∑
j=1

|p j,s(0)|

=

n∑
s=1

∞∑
k=1

∣∣∣∣∣∣
∫ ∞

0
µs(x)

(λsx)k−1

(k − 1)!
e−(ib+λs)x−

∫ x
0 µs(τ)dτdx

∣∣∣∣∣∣ ∞∑
j=1

|p j,s(0)|
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<

n∑
s=1

∞∑
k=1

∫ ∞

0
µs(x)

(λsx)k−1

(k − 1)!
e−λs x−

∫ x
0 µs(τ)dτdx

∞∑
j=1

|p j,s(0)|

=

n∑
s=1

∫ ∞

0
µs(x)

∞∑
k=1

(λsx)k−1

(k − 1)!
e−λs x−

∫ x
0 µs(τ)dτdx

∞∑
j=1

|p j,s(0)|

=

n∑
s=1

∫ ∞

0
µs(x)e−

∫ x
0 µs(τ)dτdx

∞∑
j=1

|p j,s(0)|

=

n∑
s=1

∞∑
j=1

|p j,s(0)| = ∥(p1(0), p2(0), · · · , pn(0))∥. (3.19)

That is, ∥ΦDib∥ < 1 for all |b| > M. Since λ0 > 0 and µ
s
> 0, there exists γ1 = min{λ0, µs

} > 0
such that {γ ∈ C | Re(γ) > −γ1} ⊂ ρ(A0). This means that γ = ib ∈ ρ(A0). Then, by the above
inequality (3.19), we know that the spectral radius r(ΦDib) of operator ΦDib satisfies r(ΦDib) ≤
∥ΦDib∥ < 1 if |b| > M. In other words, 1 < σ(ΦDib) for |b| > M. This indicates that there must be
γ0 = 2|b| satisfying 1 < σ(ΦDγ0). Consequently, using Lemma 3.4, we obtain γ = ib < σ(AΦ) for
|b| > M, i.e.,

{ib
∣∣∣|b| > M} ⊂ ρ(AΦ) and {ib

∣∣∣|b| ≤ M} ⊂ σ(AΦ) ∩ iR.

On the other hand, since eAΦt is a positive uniformly bounded semigroup (Theorem 2.1), using
Corollary 2.3 of [24], we obtain that σ(AΦ) ∩ iR is imaginary additively cyclic, which states that
ib ∈ σ(AΦ) ∩ iR, and we deduce that ibk ∈ σ(AΦ) ∩ iR for every integer k. Therefore, combining the
above discussion with the inclusion relationship {ib

∣∣∣|b| ≤ M} ⊂ σ(AΦ) ∩ iR and Lemma 3.1, we have
σ(AΦ) ∩ iR = {0}.

Lemma 3.6. The specific expression of the adjoint operator AΦ∗ of AΦ is as follows:

A∗
Φ

(p∗1, p
∗
2, · · · , p

∗
n) =





λ0
∑n

s=1 qs p∗1,s(0)
0

µ1(x)p∗1,1(0)
µ1(x)p∗2,1(0)
. . .


+



−λ0 0 0 0 · · ·

µ1(x) ϕ1 λ1 0 · · ·

0 0 ϕ1 λ1 · · ·

0 0 0 ϕ1 · · ·
...

...
...
...
. . .





p∗0,0
p∗1,1(x)
p∗2,1(x)
p∗3,1(x)
...


,


µ2(x)p∗0,0
µ2(x)p∗1,2(0)
µ2(x)p∗2,2(0)
. . .

 +

ϕ2 λ2 0 0 · · ·

0 ϕ2 λ2 0 · · ·

0 0 ϕ2 λ2 · · ·
...
...
...
. . .



p∗1,2(x)
p∗2,2(x)
p∗3,2(x)
...

 ,
· · · · · · ,
µn(x)p∗0,0
µn(x)p∗1,n(0)
µn(x)p∗2,n(0)
. . .

 +

ϕn λn 0 0 · · ·

0 ϕn λn 0 · · ·

0 0 ϕn λn · · ·
...
...
...
. . .



p∗1,n(x)
p∗2,n(x)
p∗3,n(x)
...


 ,

with domain D(A∗
Φ

) = {(p∗1, p
∗
2, · · · , p

∗
n) ∈ X∗ |

dp∗k,s(x)
dx existing and p∗k,s(∞) = h}, where ϕs =

d
dx − [λs +

µs(x)] and h is a positive constant that is independent of k and s.
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Proof. For (p1, p2, · · · , pn) ∈ D(AΦ) and (p∗1, p
∗
2, · · · , p

∗
n) ∈ D(A∗

Φ
), using integration by parts, we

calculate that

⟨AΦ(p1, p2, · · · , pn), (p∗1, p
∗
2, · · · , p

∗
n)⟩ =

−λ0 p0,0 +

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx

 p∗0,0

+

n∑
s=1

 ∞∑
k=1

∫ ∞

0

[
−

dpk,s(x)
dx

− (λs + µs(x))pk,s(x)
]

p∗k,s(x)dx

+

∞∑
k=2

∫ ∞

0
λs pk−1,s(x)p∗k,s(x)dx


= −λ0 p0,0 p∗0,0 + p∗0,0

n∑
s=1

∫ ∞

0
p1,s(x)µs(x)dx +

n∑
s=1

∞∑
k=1

pk,s(0)p∗k,s(0)

+

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x)

[dp∗k,s(x)

dx
− (λs + µs(x))p∗k,s(x)

]
dx

+λs

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x)p∗k+1,s(x)dx

= −λ0 p0,0 p∗0,0 + p∗0,0
n∑

s=1

∫ ∞

0
p1,s(x)µs(x)dx

+

n∑
s=1

(
qsλ0 p∗0,0 +

∫ ∞

0
p∗2,s(x)µs(x)dx

)
p∗1,s(0) +

n∑
s=1

∞∑
k=2

∫ ∞

0
pk+1,s(x)µs(x)dxp∗k,s(0)

+

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x)

[dp∗k,s(x)

dx
− (λs + µs(x))p∗k,s(x)

]
dx

+

n∑
s=1

λs

∞∑
k=1

∫ ∞

0
pk,s(x)p∗k+1,s(x)dx

= −λ0 p0,0 p∗0,0 + p∗0,0
n∑

s=1

∫ ∞

0
p1,s(x)µs(x)dx

+λ0 p0,0

n∑
s=1

qs p∗1,s(0) +
n∑

s=1

∞∑
k=1

∫ ∞

0
pk+1,s(x)µs(x)dxp∗k,s(0)

+

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x)

[dp∗k,s(x)

dx
− (λs + µs(x))p∗k,s(x)

]
dx

+

n∑
s=1

λs

∞∑
k=1

∫ ∞

0
pk,s(x)p∗k+1,s(x)dx

= ⟨(p0, p1, · · · , pn), A∗Φ(p∗0, p
∗
1, · · · , p

∗
n)⟩. (3.20)

Then, from the last equation of the above Eq (3.20), we can obtain AΦ∗.
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Lemma 3.7. The zero is an eigenvalue of A∗
Φ

with geometric multiplicity one.

Proof. We consider A∗
Φ

(p∗1, p
∗
2, · · · , p

∗
n) = 0. This equation is equivalent to

−λ0 p∗0,0 + λ0

n∑
s=1

qs p∗1,s(0) = 0, (3.21a)

dp∗1,s(x)

dx
− [λs + µs(x)]p∗1,s(x) + λs p∗2,s(x) + µs(x)p∗0,0 = 0, (3.21b)

dp∗k,s(x)

dx
− [λs + µs(x)]p∗k,s(x) + λs p∗k+1,s(x) + µs(x)p∗k−1,s(0) = 0, k ≥ 2, (3.21c)

p∗k,s(∞) = h, k ≥ 1, 1 ≤ s ≤ n. (3.21d)

By the above equations, it is easy to investigate that

(p∗1, p
∗
2, · · · , p

∗
n)(h) :=

h...
 , h...

 , · · · , h...
 ∈ D(A∗Φ),

is a positive solution of Eqs (3.21a)–(3.21d). In addition, Eqs (3.21a)–(3.21d) are equivalent to

p∗0,0 =
n∑

s=1

qs p∗1,s(0), (3.22a)

p∗2,s(x) =
1
λs

[
−

dp∗1,s(x)

dx
+ (λs + µs(x))p∗1,s(x) − µs(x)p∗0,0

]
, (3.22b)

p∗k+1,s(x) =
1
λs

[
−

dp∗k,s(x)

dx
+ (λs + µs(x))p∗k,s(x) − µs(x)p∗k−1,s(0)

]
, k ≥ 2. (3.22c)

Clearly, Eqs (3.22a)–(3.22c) imply that the geometric multiplicity of zero is one.
Proof of Theorem 3.1: Theorem 2.1 shows that semigroup eAΦt is a uniformly bounded C0−semigroup
on Banach space X. In addition, using Lemmas 3.1, 3.5, and 3.7, we obtain that σp(AΦ) ∩ iR =
σp(A∗

Φ
) ∩ iR = {0} and {γ ∈ C | γ = ib, b , 0, b ∈ R} ⊂ ρ(AΦ), and zero is an eigenvalue of A∗

Φ
with

algebraic multiplicity one. Hence, due to Theorem 1.96 of [12], we obtain that the time-evolving
solution of system (2.2) converges strongly to its static solution. In other words,

lim
t→∞
∥(p1, p2, · · · , pn)(·, t) − ⟨(p∗1, p

∗
2, · · · , p

∗
n), (g1, g2, · · · , gn)⟩(p1, p2, · · · , pn)(·)∥ = 0,

where (p∗1, p
∗
2, · · · , p

∗
n) and (p1, p2, · · · , pn) are the eigenvectors associated to zero in Lemmas 3.7

and 3.1, respectively.
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3.2. Exponential convergence of the time-evolving solution

To prove the exponential convergence of the time-evolving solution, we need to find the spectral
distribution of AΦ on the left-half complex plane. For this objective, we first provide the following
Lemma 3.8.

Lemma 3.8. If λs < µs, 1 ≤ s ≤ n, then each point in

Λ :=
{
γ ∈ C

∣∣∣∣ ∣∣∣∣γ + λs + µs ±
√

(γ + λs + µs)2 − 4λsµs

∣∣∣∣ < 2µs,Re(γ) + µs > 0
}
∪ {0},

is an eigenvalue of AΦ with geometric multiplicity one, in particular(
− min

1≤s≤n
{µs}, min

1≤s≤n
{2

√
λsµs − λs − µs}

)⋃[
max
1≤s≤n
{2

√
λsµs − λs − µs}, 0

]
⊂ σ(AΦ).

Proof. For each γ ∈ Λ, we consider the equation AΦ(p1, p2, · · · , pn) = γ(p1, p2, · · · , pn) of unknown
(p1, p2, · · · , pn) ∈ D(AΦ). This is equivalent to the following system:

(γ + λ0)p0,0 =

n∑
s=1

µs

∫ ∞

0
p1,s(x)dx, (3.23a)

dp1,s(x)
dx

= −(γ + λs + µs)p1,s(x), (3.23b)

dpk,s(x)
dx

= −(γ + λs + µs)pk,s(x) + λs pk−1,s(x), k ≥ 2, (3.23c)

p1,s(0) = qsλ0 p0,0 + µs

∫ ∞

0
p2,s(x)dx, (3.23d)

pk,s(0) = µs

∫ ∞

0
pk+1,s(x)dx, k ≥ 2. (3.23e)

Solving Eqs (3.23b) and (3.23c), we have

pk,s(x) = e−(γ+λs+µs)x
k∑

j=1

(λsx)k− j

(k − j)!
p j,s(0), k ≥ 1; 1 ≤ s ≤ n. (3.24)

From this together with the formula∫ ∞

0
xk− je−(γ+λs+µs)xdx =

(k − j)!
(γ + λs + µs)k+1− j , Re(γ) + λs + µs > 0,

we obtain ∫ ∞

0
pk,s(x)dx =

k∑
j=1

λ
k− j
s

(γ + λs + µs)k+1− j p j,s(0), k ≥ 1. (3.25)

We can thus combine Eqs (3.23e) and (3.25) to obtain

pk,s(0) = µs

k+1∑
j=1

λ
k+1− j
s

(γ + λs + µs)k+2− j p j,s(0), k ≥ 2. (3.26)
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This yields

pk+1,s(0) −
λs

γ + λs + µs
pk,s(0) =

µs

γ + λs + µs
pk+2,s(0), k ≥ 2.

Clearly, the above equation is equivalent to

pk+2,s(0) =
γ + λs + µs

µs
pk+1,s(0) −

λs

µs
pk,s(0), k ≥ 2. (3.27)

For any complex number ξs and ηs, 1 ≤ s ≤ n, if we set

pk+2,s(0) − ξs pk+1,s(0) = ηs[pk+1,s(0) − ξs pk,s(0)], k ≥ 2, (3.28)

then it is easy to see that ξs and ηs satisfy the following two equations:

ξs + ηs =
γ + λs + µs

µs
, ξsηs =

λs

µs
. (3.29)

From Eq (3.29), it is easy to determine that

ξs =
γ + λs + µs +

√
(γ + λs + µs)2 − 4λsµs

2µs
, (3.30a)

ηs =
γ + λs + µs −

√
(γ + λs + µs)2 − 4λsµs

2µs
. (3.30b)

Note that from Eq (3.28), we observe that

pk+2,s(0) − ξs pk+1,s(0) = ηk−1
s [p3,s(0) − ξs p2,s(0)], k ≥ 2. (3.31)

Then, by reusing the above equations and organizing it, we obtain

pk+2,s(0) = ξs pk+1,s(0) − ξs[pk+1,s(0) − ξs pk,s(0)] − ξ2
s [pk,s(0) − ξs pk−1,s(0)]

−ξ3
s [pk−1,s(0) − ξs pk−2,s(0)] − ξk−2

s [p4,s(0) − ξs p3,s(0)]

= [ηk−1
s + ξsη

k−2
s + · · · + ξk−2

s ηs + ξ
k−1
s ]p3,s(0)

−[ηk−2
s + ξsη

k−3
s + · · · + ξk−3

s ηs + ξ
k−2
s ]ξsηs p2,s(0), k ≥ 2.

(3.32)

If ξs = ηs, then Eq (3.32) is simplified as

pk+2,s(0) = kξk−1
s p3,s(0) − (k − 1)ξk

s p2,s(0), k ≥ 2.

The inequality |pk+2,s(0)| ≤ k|ξs|
k−1|p3,s(0)| + (k − 1)|ξs|

k|p2,s(0)| can be obtained by taking the
absolute value of the above equation. Then, taking the sum of k = 2 to∞ for this inequality, we obtain

∞∑
k=2

|pk+2,s(0)| ≤ |p3,s(0)|
∞∑

k=2

k|ξs|
k−1 + |p2,s(0)|

∞∑
k=2

(k − 1)|ξs|
k. (3.33)
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If ξs , ηs, then Eq (3.32) can be written as

pk+2,s(0) =
p3,s(0) − ηs p2,s(0)

ξs − ηs
ξk

s −
p3,s(0) − ξs p2,s(0)

ξs − ηs
ηk

s.

This means that

∞∑
k=2

|pk+2,s(0)| ≤
∣∣∣∣∣ p3,s(0) − ηs p2,s(0)

ξs − ηs

∣∣∣∣∣ ∞∑
k=2

|ξs|
k +

∣∣∣∣∣ p3,s(0) − ξs p2,s(0)
ξs − ηs

∣∣∣∣∣ ∞∑
k=2

|ηs|
k. (3.34)

Moreover, take the L1[0,∞)−norm on both sides of Eq (3.24), and using the formula∫ ∞

0
xk− je−(Re(γ)+λs+µs)xdx =

(k − j)!
(Re(γ) + λs + µs)k+1− j ,

for all Re(γ) + µs > 0, we have

∥pk,s∥L1[0,∞) ≤

k∑
j=1

λ
k− j
s

(k − j)!
|p j,s(0)|

∫ ∞

0
xk− je−(Re(γ)+λs+µs)xdx

=
1

Re(γ) + λs + µs

k∑
j=1

(
λs

Re(γ) + λs + µs

)k− j

|p j,s(0)|.

(3.35)

Therefore, for all Re(γ)+ µs > 0, by the above inequalities and Cauchy product of series, we obtain

∞∑
k=1

∥pk,s∥L1[0,∞) ≤
1

Re(γ) + λs + µs

∞∑
k=1

k∑
j=1

(
λs

Re(γ) + λs + µs

)k− j

|p j,s(0)|

=
1

Re(γ) + λs + µs

∞∑
k=1

|pk,s(0)|
∞∑
j=1

(
λs

Re(γ) + λs + µs

) j−1

=
1

Re(γ) + µs

∞∑
k=1

|pk,s(0)|.

(3.36)

In addition, from Eqs (3.23a), (3.25), (3.23d), and (3.26), it is easy to calculate that

p0,0 =
1

γ + λ0

n∑
s=1

µs

γ + λs + µs
p1,s(0), (3.37a)

p1,s(0) = qsλ0 p0,0 + µs

[
λs

(γ + λs + µs)2 p1,s(0) +
1

γ + λs + µs
p2,s(0)

]
, (3.37b)

p2,s(0) =
(γ + λs + µs)2 − λsµs

µs(γ + λs + µs)
p1,s(0) −

(γ + λs + µs)qsλ0

µs
p0,0, (3.37c)

p3,s(0) =
(γ + λs + µs)2 − λsµs

µs(γ + λs + µs)
p2,s(0) −

(
λs

γ + λs + µs

)2

p1,s(0). (3.37d)
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Finally, by Eqs (3.30a) and (3.30b), it is easy to see that γ ∈ Λ if, and only if, Re(γ) + µs > 0 and
|ξs| < 1, |ηs| < 1, 1 ≤ s ≤ n. Therefore, if γ ∈ Λ, then from Eqs (3.36), (3.33), (3.34), (3.37a), and
(3.37d), we obtain

∥(p1, p2, · · · , pn)∥ = |p0,0| +

n∑
s=1

∞∑
k=1

∥pk,s∥L1[0,∞) < ∞. (3.38)

The Eq (3.38) shows that for any γ in Λ is an eigenvalue of AΦ. Moreover, Eqs (3.24), (3.26),
(3.32), (3.37a), and (3.37d) mean that the geometric multiplicity of every γ ∈ Λ is one.

Next, we observe the case γ ∈ R. Since Theorem 2.3 implies that (0,∞) ⊂ ρ(AΦ), the real spectrum
of AΦ in the interval (−∞, 0] exists. We discuss the real spectrum of AΦ in the following three cases.

Case 1: (γ + λs + µs)2 > 4λsµs if, and only if, |γ + λs + µs| > 2
√
λsµs. Since γ + µs > 0 and

γ + λs + µs > 2
√
λsµs, we have γ > 2

√
λsµs − λs − µs. From this together with λs < µs and γ + µs > 0,

it is easy to calculate that

γ < 0⇒ 4µs(γ + λs) − 4λsµs < 0

⇒ (γ + λs)2 + 2µs(γ + λs) + µ2
s − 4λsµs < (γ + λs)2 − 2µs(γ + λs) + µ2

s

⇒
√

(γ + λs + µs)2 − 4λsµs < −(γ + λs − µs)

⇒ γ + λs + µs +
√

(γ + λs + µs)2 − 4λsµs < 2µs

⇒ 0 < ξs =
γ + λs + µs +

√
(γ + λs + µs)2 − 4λsµs

2µs
< 1,

0 < ηs =
γ + λs + µs −

√
(γ + λs + µs)2 − 4λsµs

2µs
< ξs < 1. (3.39)

This implies
(
max1≤s≤n{2

√
λsµs − λs − µs}, 0

)
⊂ σ(AΦ). Then, from this together with Lemma 3.1,

we obtain (
max
1≤s≤n
{2

√
λsµs − λs − µs}, 0

]
⊂ σ(AΦ).

Case 2: (γ + λs + µs)2 = 4λsµs if, and only if, |γ + λs + µs| = 2
√
λsµs. Since γ + µs > 0 and

γ + λs + µs = 2
√
λsµs, we deduce γ = 2

√
λsµs − λs − µs. Then, using λs < µs and γ + µs > 0, we have

0 < ξs = ηs =
γ + λs + µs

2µs
=

2
√
λsµs

2µs
=

√
λs

µs
< 1.

This shows that max{2
√
λ1µ1 − λ1 − µ1, · · · , 2

√
λnµn − λn − µn} is an eigenvalue of AΦ.

Case 3: (γ + λs + µs)2 < 4λsµs if, and only if, −2
√
λsµs < γ + λs + µs < 2

√
λsµs. Since γ + µs > 0

and 0 < γ + λs + µs < 2
√
λsµs, we obtain γ < 2

√
λsµs − λs − µs. Then, from this together with λs < µs,

γ + µs > 0, and i2 = −1, we have

ξs, ηs =
γ + λs + µs ± i

√
4λsµs − (γ + λs + µs)2

2µs
.

Therefore,

|ξs| = |ηs| =

√
(γ + λs + µs)2 + 4λsµs − (γ + λs + µs)2

2µs
=

√
λs

µs
< 1. (3.40)
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Hence, this implies that(
− min

1≤s≤n
{µs}, min

1≤s≤n
{2

√
λsµs − λs − µs}

)
⊂ σ(AΦ).

Consequently, by summing up the above three cases, we obtain(
− min

1≤s≤n
{µs}, min

1≤s≤n
{2

√
λsµs − λs − µs}

)⋃[
max
1≤s≤n
{2

√
λsµs − λs − µs}, 0

]
⊂ σ(AΦ).

Let ω0(AΦ), ωess(AΦ), s(AΦ) represent the growth bound, the essential growth bound, and spectral
bound of AΦ, respectively. The spectral mapping theorem [11] means that

σp(eAΦt) = etσp(AΦ) ∪ {0},

Hence, from this property and Lemma 3.8, we obtain that eAΦt has uncountable eigenvalues.
Therefore, eAΦt is not compact and it is not eventually compact by Corollary V.3.2 of [11].

Additionally, due to eAΦt being a C0−semigroup on X with generator AΦ, using Corollary IV.2.11
of [11], we know that ω0 = max{ωess, s(AΦ)} and σ(AΦ) ∩ {γ ∈ C | Re(γ) ≥ w} is finite for every
w > ωess. Using Lemma 3.8, we can obtain that the spectrum determined condition ω0 = s(AΦ) holds
and ω0 = s(AΦ) = 0 (we suggest that readers refer to the proof of Theorem 4.1 in [25] for similar proofs
in this part). Hence, using the aforementioned discussions, we have ωess = 0. Then, by Proposition 3.5
of [11], we derive that eAΦt is not quasi-compact.

The main result of this subsection is given by the following Theorem 3.2.

Theorem 3.2. Let µs(·) := µs be a constant and λs < µs, 1 ≤ s ≤ n. Then, the time-evolving solution
of the system (2.2) cannot exponentially converge to its static solution. That is to say, there are no
constantsM > 0 and ε > 0 such that∥∥∥eAΦt ((p1, p2, · · · , pn)(0) + AΦ(p1, p2, · · · , pn)

)
− (p1, p2, · · · , pn)(0)

∥∥∥
≤ Me−εt∥(p1, p2, · · · , pn)∥,

for any t ≥ 0 and (p1, p2, · · · , pn) ∈ D(AΦ), where (p1, p2, · · · , pn)(0) is the eigenvector associated
to zero.

Proof. Assume that (p1, p2, · · · , pn)(0) and (p1, p2, · · · , pn)(r) are the eigenvectors of 0 and

r max
1≤s≤n
{2

√
λsµs − λs − µs} := rβs,

in Lemma 3.8, respectively, for any r ∈ (0, 1). Hence, using AΦ(p1, p2, · · · , pn)(0) = 0 and
AΦ(p1, p2, · · · , pn)(r) = rβs(p1, p2, · · · , pn)(r), we have

eAΦt [(p1, p2, · · · , pn)(0) + AΦ(p1, p2, · · · , pn)(r)
]

= eAΦt(p1, p2, · · · , pn)(0) + eAΦtAΦ(p1, p2, · · · , pn)(r)

= (p1, p2, · · · , pn)(0) + eAΦtrβs(p1, p2, · · · , pn)(δ)

= (p1, p2, · · · , pn)(0) + rβserβst(p1, p2, · · · , pn)(r). (3.41)
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Therefore, ∥∥∥eAΦt ((p1, p2, · · · , pn)(0) + AΦ(p1, p2, · · · , pn)(r)
)
− (p1, p2, · · · , pn)(0)

∥∥∥
= r|βs|erβst

∥∥∥(p1, p2, · · · , pn)(r)

∥∥∥ , ∀t ≥ 0, ∀r ∈ (0, 1). (3.42)

That is, there are no constantsM > 0 and ε > 0 such that∥∥∥eAΦt ((p1, p2, · · · , pn)(0) + AΦ(p1, p2, · · · , pn)
)
− (p1, p2, · · · , pn)(0)

∥∥∥
≤ Me−εt∥(p1, p2, · · · , pn)∥.

for any t ≥ 0 and (p1, p2, · · · , pn) ∈ D(AΦ).

In neural network [17] and reliability model [12], it has been proven that the semigroup correspond-
ing to these systems is a quasi-compact strongly continuous semigroup, thus they obtain the dynamic
solution of the corresponding system that strongly converges to its steady-state solution. Therefore, the
result of Theorem 3.2 is significantly different from those in [12, 17].

4. Asymptotic behavior of the time-evolving queue length

Define the time-evolving queue length of system (1.6) by

L(t) = p0,0(t) +
n∑

s=1

∞∑
k=1

∫ ∞

0
pk,s(x, t)dx.

Then, by combining Theorems 2.1, 2.3 and 3.1 and Lemma 3.1, we can obtain the asymptotic
behavior of L(t).

Theorem 4.1. Let µs(x) : [0,∞)→ [0,∞) be a measurable function that satisfies

0 < inf
x∈[0,∞)

µs(x) ≤ µs(x) ≤ sup
x∈[0,∞)

µs(x) < ∞, 1 ≤ s ≤ n.

If the initial value (g1(·), g2(·), · · · , gn(·)) of the system (1.6) and the eigenvector
(p̃1(·), p̃2(·), · · · , p̃n(·)) corresponding to zero satisfying p̃s(·) ≥ us(·), then time-evolving queue length
L(·) of system (1.6) converges to its static queue length. That is to say,

lim
t→∞

L(t) = p̃0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
p̃k,s(x)dx.

Proof. For any (p1, p2, · · · , pn) and (y1, y2, · · · , yn) in X, we introduce an order relation “≥” by

(p1, p2, · · · , pn) ≥ (y1, y2, · · · , yn)
⇐⇒ ps ≥ ys, 1 ≤ s ≤ n
⇐⇒ p0,0 ≥ y0,0 and pk,s(x) ≥ yk,s(x), x ∈ [0,∞), k ≥ 1, 1 ≤ s ≤ n.

Then, it is not difficult to show that “≥” is a partial order relation in X. Therefore, (X,≥) is a
poset. Let ( p̃1, p̃2, · · · , p̃n) be the positive eigenvector associated to zero of AΦ (Lemma 3.1). Let
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(p̃1, p̃2, · · · , p̃n) and the initial value (g1, g2, · · · , gn) of the system (2.2) satisfy the aforementioned
partial order relation

p̃0,0 ≥ g0,0, p̃k,s(x) ≥ gk,s(x), x ∈ [0,∞), k ≥ 1, 1 ≤ s ≤ n.

That is, (p̃1, p̃2, · · · , p̃n) ≥ (g1, g2, · · · , gn). Due to eAΦt being a positive linear operator (Theo-
rem 2.1), it is a monotone increasing operator. In addition, by Theorem 2.3 and Lemma 3.1, we
know that  (p1(·, t), p2(·, t), · · · , pn(·, t)) = eAΦt(g1(·), g2(·), · · · , gn(·)), t ≥ 0,

eAΦt(p̃1(·), p̃2(·), · · · , p̃n(·)) = ( p̃1(·), p̃2(·), · · · , p̃n(·)), t ≥ 0.

Therefore, from this together with the partial order relation (p̃1, p̃2, · · · , p̃n) ≥ (g1, g2, · · · , gn),
we have

eAΦt(p̃1(·), p̃2(·), · · · , p̃n(·)) ≥ eAΦt(g1(·), g2(·), · · · , gn(·))

=⇒ ( p̃1(·), p̃2(·), · · · , p̃n(·)) ≥ (p1(·, t), p2(·, t), · · · , pn(·, t))

=⇒ p̃0,0 ≥ p0,0(t), p̃k,s(·) ≥ pk,s(·, t), k ≥ 1,

=⇒ ∞ > p̃0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
p̃k,s(x)dx ≥ p0,0(t) +

n∑
s=1

∞∑
k=1

∫ ∞

0
pk,s(x, t)dx, t ≥ 0.

Theorem 3.1 includes the following result:

lim
t→∞

|p0,0(t) − p̃0,0| +

n∑
s=1

∞∑
k=1

∫ ∞

0
|pk,s(x, t) − p̃k,s(x)|dx

 = 0.

Hence, by Lemma 3.1 and the Lebesgue theorem, we obtain

lim
t→∞

∣∣∣∣∣∣∣L(t) −

p̃0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
p̃k,s(x)dx


∣∣∣∣∣∣∣

≤ lim
t→∞

|p0,0(t) − p̃0,0| +

n∑
s=1

∞∑
k=1

∫ ∞

0
|pk,s(x, t) − p̃k,s(x)|dx

 = 0.

This inequality shows that

lim
t→∞

L(t) = p̃0,0 +

n∑
s=1

∞∑
k=1

∫ ∞

0
p̃k,s(x)dx.

Remark 4.1. In Theorem 4.1, the static queue length is obtained by using the eigenvector that related
to zero (Lemma 3.1). This is the same as the result obtained by introducing probability generating
functions in [3].

Similarly, we can obtain the other time-evolving indicators of system (1.6) such as the convergence
of the time-evolving average number of customers to its static average number of customers.
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5. Numerical analysis

To prove the correctness of the exponential convergence results in this article, we perform numerical
analysis on the spectral results in Lemma 3.8. The numerical analysis results are shown in Figures 1
and 2. We obtain these numerical results using Matlab.

In Figure 1(a), we consider that system (1.6) only has the idle period and one operational phase,
that is, n = 1 in system (1.6). In other words, we consider the classical queuing model [5], and the point
spectrum results of the system operator AΦ of this queueing model [5] are obtained in detail in [8–10].
If we take λ1 = 0.1, µ1 = 0.9, then it is easy to see that λ1

µ1
= 0.1

0.9 < 1 and 2
√
λ1µ1 − λ1 − µ1 = −0.4. In

addition, Figure 1(a) means that 0 < ξ1 < 1 and 0 < η1 < 1 for all γ ∈ (−0.4, 0). Hence, by Eqs (3.34)
and (3.36), we see that every γ ∈ (−0.4, 0) is the point spectrum of AΦ.

In Figure 1(b), we consider that system (1.6) only has the idle period and two operational phases,
that is, n = 2 in system (1.6). In this case, we take λ1 = 0.1, µ1 = 0.9 and λ2 = 0.2, µ2 = 0.8.
Then, these values satisfy λ1

µ1
= 1

9 ,
λ2
µ2
= 1

4 , and maxs=1,2{2
√
λsµs − λs − µs} = −0.2. Moreover, when

γ ∈ (−0.2, 0), from Figure 1(b) we see that ξ1, ξ2, η1, and η2 satisfy 0 < ξn < 1 and 0 < ηn < 1. Therefore,
by Eqs (3.34) and (3.36), we know that all γ ∈ (−0.2, 0) are the point spectrum of AΦ. Figure 1 means
that the point spectrum results in Lemma 3.8 are correct if λs < µs, s = 1, 2. Therefore, the exponential
convergence result of Theorem 3.2 is valid.

(a) For n = 1, λ1 = 0.1, µ1 = 0.9. (b) For n = 2, λ1 = 0.1, µ1 = 0.9, λ2 = 0.2, µ2 = 0.8.

Figure 1. For Lemma 3.8.

In the following, we check whether the condition λs < µs, 1 ≤ s ≤ n in Lemma 3.8 is necessary.
In Figure 2, we consider that system (1.6) only has the idle period and two operational phases, that
is, n = 2 in system (1.6). If we take λ1 = 0.1, µ1 = 0.9 and λ2 = 0.8, µ2 = 0.2, then we have λ1 < µ1

and λ2 > µ2. In this case, Figure 2(a) means that 0 < ξ1 < 1, 0 < η1 < 1, and ξ2 > 1, η2 > 1 for all
γ ∈ (−0.2, 0).

If we take λ1 = 0.9, µ1 = 0.1 and λ2 = 0.8, µ2 = 0.2, then we have λn > µn. In this case, Figure 2(b)
implies that ξn > 1 and ηn > 1 for all γ ∈ (−0.2, 0). Of course, we can choose some different λn and µn,
at least one of which satisfies λs0 > µs0 for some s0 = 1, 2, · · · , n, to obtain the same conclusion. As a
result, Figure 2 means that we cannot obtain whether it is γ ∈ σp(AΦ), or even whether it is γ ∈ σ(AΦ)
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under the above circumstances, where γ ∈ (max1≤s≤n{2
√
λsµs−λs−µs}, 0). Therefore, in Lemma 3.8 (or

in Theorem 3.2), we must consider the condition λs < µs. This condition is also the stability condition
obtained for system (1.6) in reference [3].

(a) For n = 2, λ1 = 0.1, µ1 = 0.9, λ2 = 0.8, µ2 = 0.2. (b) For n = 2, λ1 = 0.9, µ1 = 0.1, λ2 = 0.8, µ2 = 0.2.

Figure 2. For Lemma 3.8.

6. Conclusions

In this article, we conduct a dynamic analysis of the M/G/1 queueing system with multiple phases
of operation. Using operator semigroup theory, we prove that there exists a unique time-evolving
solution for this system. We obtain the spectral distribution of the system operator on the imaginary axis
and prove that the system operator has an infinite number of eigenvalues on the left-half of the complex
plane. As a result, the above solution converges at most strongly to its static solution. We also discuss
the compactness of the system’s corresponding semigroup by using these spectral results. However, we
have not obtained the complete spectrum of the system operator on the left-half of the complex plane.
This is the work we will continue to do in the future. Additionally, we obtain that the dynamic queue
length of the model strongly converges to its static queue length.

The method described in this article can only be applied to queuing systems established using the
supplementary variable method and described by partial differential equations. For example, we cannot
use the method proposed in this paper for the queuing systems in [1, 26, 27].
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