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1. Introduction

In this paper, we continue the study of the critical points of positive solutions to nonlinear pde’s,
that we started in [1] and [2], extending it when the underlying domain is contained in a compact
manifoldM. Our aim is to give an estimate on the possible number of maxima, minima, and saddle
points of positive solutions to some nonlinear pde’s and to their index of critical point. We examine
first the case of the sphere in Theorem 1.1, and then we extend the result to a more general surfaceM
in Theorem 1.4. We consider the mean field problem in a smooth domain D ⊂ M−∆gu = ρ h(x)eu∫

D h(x)eudVg
on D,

u = 0 on ∂D,
(1.1)

whereM is a compact Riemannian surface with metric g, h(x) is a smooth function strictly positive on
D, ρ is a positive constant, ∆g is the Laplace Beltrami operator onM, and dVg is the volume form on
M.

The Mean Field equation appears in conformal geometry in the problem of understanding the
possible Gauss curvatures h(x) of metrics onM conformal to the standard metric. WhenM = S 2, it is
called the Nirenberg problem, and one can see as references the papers [3–6] and references therein.
It arises also in some physical models as the mean-field limit of point vortices in the theory of Euler
flows, as in [7–10]. And also in the abelian Chern–Simons–Higgs models, see [11–16].
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To state our main result, we need to recall some properties of solutions to Eq (1.1). Let D ⊂ M
be a smooth bounded domain. Assume h is a smooth function such that infD h(x) > c for some
c > 0. (By smooth, we mean locally analitic). By [17], problem (1.1) has a solution in H1

0(D) for any
ρ ∈ (8kπ, 8(k + 1)π) at least when D is not simply connected, while it has a solution in H1

0(D) for any
ρ ∈ (0, 8π) for every D. The case of ρ = 8πk is more complicated and depends on the domain D, on
the value of m and on the manifoldM. Here we assume to have a sequence of solutions un to−∆gun = ρn

h(x)eun∫
D h(x)eun dVg

on D,

un = 0 on ∂D,
(1.2)

such that ρn → 8πm, for some m ≥ 1, as n → ∞. It is well known that, see [5, 17], there exist m
points {P1, .., Pm} ⊂ D and m sequences of points pi,n → Pi (as n → ∞) for i = 1, ..,m such that
un(pi,n) → +∞ as n → ∞; un − log

∫
D

h(x)eundVg → −∞ uniformly on compact sets of D \ {P1, .., Pm}

as n→ ∞. We say that un is a sequence of m blowing-up solutions to Eq (1.2). The value of 8π comes
from the standard bubble solutions to

−∆v = ev in IR2. (1.3)

In fact, in a shrinking ball centered at pi,n, it is possible to appropriately rescale the solution un to
Eq (1.2) and show that this rescaling converges in C2

loc(IR
2) to the solution v of Eq (1.3). Thus, each

concentration point Pi contributes an amount of 8π.
Our main result is the following:

Theorem 1.1. LetM = S2 and D ⊂ S2 a smooth domain of Euler characteristic χ(D). Assume h is
a smooth function such that infD h(x) > c for some c > 0. Assume we have a sequence of solutions un

to Eq (1.2) such that ρn → 8πm, for some m ≥ 1, as n → ∞. Then, un is a sequence of m blowing-up
solutions, and for n large enough

♯{critical point of un in D} ≥ 2m − χ(D). (1.4)

More precisely, we have that, for n large, there exists exactly one critical point (a nondegenerate
maximum) for un in Bδ(Pi) i = 1, ..,m and δ small. Next, denoting by D′ = D \ ∪m

i=1Bδ(Pi) and Cn the
set of critical points of un in D′ we have that un admits at least m − χ(D) nondegenerate saddle points
in D′ and ∑

z j∈Cn

indexz j(∇un) = χ(D) − m. (1.5)

We can also construct some examples when the estimate in Eq (1.4) is optimal or not.

Corollary 1.2. There exists a domain D ⊂ S2 and a sequence of solutions un to Eq (1.2) that blow-up
at m ≥ 1 points {P1, . . . , Pm} such that, for n large enough,

♯{critical point of un in D} = 2m − χ(D). (1.6)

Moreover, all critical points of un are nondegenerate; m of them are local maxima and m−χ(D) saddle
points.
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Corollary 1.3. There exists a domain D ⊂ S2 and a sequence of solutions un to Eq (1.2) that blow-up
at m ≥ 1 points {P1, . . . , Pm} such that, for n large enough

♯{critical point of un in D} > 2m − χ(D).

The results of Theorem 1.1 and its corollaries can be generalized to a more general smooth surfaces
M when the underlying domain D is all contained in a chart of local isotermal coordinates. And this
is possible at least when D is sufficiently small with respect to the coordinates. We will say that D is
suitable when there exists a system of local isotermal coordinates such that D is contained in a unique
chart. For a domain D that is suitable, we can prove the following:

Theorem 1.4. Let M be a smooth surface and D ⊂ M a suitable smooth domain of Euler
characteristic χ(D). Assume the assumptions of Theorem 1.1 are satisfied. Then the results of
Theorem 1, Corollary 1.2, 1.3 hold for the solutions un to Eq (1.2) in D ⊂ M.

Next, we consider the analog of problem (1.1) in a smooth bounded domainΩ ⊂ IR2. LetΩ ⊂ IR2 be
a smooth bounded domain with k ≥ 0 holes. Assume V(x) is a smooth function such that infΩ V(x) > c
for some c > 0. Assume we have a sequence of solutions ũn to−∆ũn = λnV(x)eũn in Ω,

ũn = 0 on ∂Ω,
(1.7)

such that λn

∫
Ω

V(x)eũndx → 8πm as n → ∞, for some integer m ≥ 1. Then, there exist m points
{P1, .., Pm} ⊂ Ω and m sequences of points xi,n → Pi (as n→ ∞) for i = 1, ..,m, such that ũn(xi,n)→ +∞
as n → ∞; ũn → K(x) := 8π

∑m
i=1 G(x, Pi) uniformly on compact sets of Ω \ {P1, .., Pm} as n → ∞,

where G(x, y) is the Green function of the domain Ω with Dirichlet boundary conditions and pole in
y ∈ Ω. We say that ũn is a sequence of m blowing-up solutions to Eq (1.7).
In this case, we can prove the following result:

Theorem 1.5. LetΩ ⊂ IR2 be a smooth bounded domain with k ≥ 0 holes. Assume we have a sequence
of solutions ũn to Eq (1.7) such that λn

∫
Ω

V(x)eũndx → 8πm as n → ∞, for some integer m ≥ 1. Then,
when n is large enough,

♯{critical point of ũn in Ω} ≥ 2m + k − 1. (1.8)

More precisely, we have that, for n large, there exists exactly one critical point (a nondegenerate
maximum) for ũn in Bρ(Pi) i = 1, ..,m and ρ small. Next, denoting by Ω′ = Ω \ ∪m

i=1Bρ(Pi) and Cn the
set of critical points of ũn in Ω′ we have that ũn admit at least m + k − 1 nondegenerate saddle points
in Ω′ and ∑

z j∈Cn

indexz j(∇ũn) = 1 − k − m. (1.9)

2. Proofs

In this section, we collect the proofs of the previous results.

Proof of Theorem 1.1. We take a point N ∈ S2, such that N < D̄, to be the north pole of the sphere.
Then we introduce the standard coordinates on the sphere S2. We use the stereographic projection

Networks and Heterogeneous Media Volume 19, Issue 3, 1336–1343.



1339

ψ : S2 \ {N} → IR2. We let Ω := ψ(D) ⊂ IR2 and vn(x) := un(ψ−1(x)) for x ∈ Ω. In these coordinates the
functions vn satisfy −∆vn = ρn

h(x)evn∫
Ω

h(x)evn eψ(x)dx
eψ(x) in Ω

vn = 0 on ∂Ω
(2.1)

where
eψ(x) :=

4
(1 + |x|2)2

is the conformal factor. Next we let

λn =
ρn∫

Ω
h(x)evneψ(x)dx

and V(x) := h(x)eψ(x). Then vn solves−∆vn = λnV(x)evn in Ω,
vn = 0 on ∂Ω,

(2.2)

for some V(x) (which is locally analytic in Ω) and for some λn ∈ (0,∞). Moreover, since ρn → 8πm as
n→ ∞, then

lim
n→∞

λn

∫
Ω

V(x)evndx = 8πm.

Finally, Ω = ψ(D) and χ(Ω) = χ(D). Since Ω ⊂ IR2 and it is smooth, then χ(D) = 1 − k where k is the
number of the holes of Ω. Then, the claim follows from Theorem 1.5.

Proof of Corollaries 1.2 and 1.3. In [2], the authors construct a suitable domain Ω1 ⊂ IR2 in which
vn (the solution to Eq (2.1), with V(x) = 1) has exactly 2m + k − 1 nondegenerate critical points (m
maxima and m+ k− 1 saddle points). The very same construction can be done for the case of solutions
to Eq (2.1) for a positive, smooth V(x). Pulling back the domain Ω on the sphere S2 gives the desired
example on S.

In Theorem 1.4 in [2], an example of a domain Ω2 ⊂ IR2 in which vn has at least 2m + k + 1 =
2m − χ(Ω2) + 2 nondegenerate critical points is given. This provides the example in Corollary 1.3.

Proof of Theorem 1.4. We consider the local isotermal coordinates such that D is contained in a unique
chart. In these coordinates, Eq (1.2) becomes Eq (2.1), where eψ(x) is the conformal factor which is
locally analitic since we are assumingM is smooth. The proof follows as in the case of Theorem 1.1
and its corollaries.

Proof of Theorem 1.5. The proof is similar to the proof of Theorem 1.1 in [2]. First, we prove the
following statement:

There exists ρ > 0 such that ũn has a unique nondegenerate critical point (the maximum) in Bρ(Pi)
for i = 1, . . . ,m when n is large enough.

By contradiction, we assume that there exists ξn ∈ Bρn(xi,n)\ {xi,n} such that ρn → 0 and ∇un(ξn) = 0.
We have to distinguish two cases: i) ξn ∈ BRδi,n(xi,n) for some i ∈ {1, ..,m}, for some R > 0; ii)
ξn < BRδi,n(xi,n) for any R > 0, where δi,n satisfies

δ2
i,nλnV(xi,n)eũn(xi,n) = 1.
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For i = 1, . . . ,m, we let

ûi,n(x) := ũn(δi,nx + xi,n) − ũn(xi,n).

The function ûi,n(x) satisfies

−∆ûi,n =
V(δi,nx + xi,n)

V(xi,n)
eûi,n in B R

δi,n
(0).

It is standard that

ûi,n → U(x) := log
1(

1 + |x|
2

8

)2 in C2
loc(IR

2),

see, [18–22]. Denote by ξ̂n := ξn−xi,n

δi,n
. Then ∇ûi,n(̂ξn) = ∇ũn(ξn) = 0 and |̂ξn| ≤ R. Up to a subsequence,

ξ̂n → ξ̂ and by the previous convergence, ∇U (̂ξ) = 0. Then the definition of U(x) implies ξ̂ = 0. This is
not possible, since x = 0 is a nondegenerate maximum point for the function U(x) and the functions ûi,n

have a maximum in x = 0 for every n. This also shows that the point xi,n is a nondegenerate maximum
for ũn(x) and that indexxi,n(∇ũn) = 1.
Case ii). In this case, we have that ξn → Pi. Denoting by rn := |ξn − xi,n|, we have that δi,n

rn
→ 0 as

n→ 0. We define the function ūi,n(x) := ũn(rnx + xi,n) + 4 log rn. Green’s representation formula gives

ūi,n(x) = λn

∫
Ω

G(rnx + xi,n, y)V(y)eũn(y)dy + 4 log rn

= λn

∫
Ω\∪iBR(xi,n)

G(rnx + xi,n, y)V(y)eũn(y)dy︸                                               ︷︷                                               ︸
:=I1

+
∑
j,i

λn

∫
BR(x j,n)

G(rnx + xi,n, y)V(y)eũn(y)dy︸                                               ︷︷                                               ︸
:=I2

+ λn

∫
BR(xi,n)

G(rnx + xi,n, y)V(y)eũn(y)dy + 4 log rn︸                                                       ︷︷                                                       ︸
:=I3

.

First we observe that I1 = o(1) as n → ∞ since ũn(y) is bounded in Ω \ ∪iBR(xi,n) and λn → 0. The
second term can be estimated as:

I2 =
∑
j,i

λn

∫
BR(x j,n)

G(rnx + xi,n, y)V(y)eũn(y)dy

=
∑
j,i

∫
B R
δ j,n

(0)
G(rnx + xi,n, δ j,ny + x j,n)

V(δ j,ny + x j,n)
V(x j,n)

eû j,n(y)dy

=
∑
j,i

8πG(Pi, P j) + o(1).
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The last term is given by:

I3 =λn

∫
BR(xi,n)

G(rnx + xi,n, y)V(y)eũn(y)dy + 4 log rn

=

∫
B R
δi,n

(0)
G(rnx + xi,n, δi,ny + xi,n)

V(δi,ny + xi,n)
V(xi,n)

eûi,n(y)dy + 4 log rn

= 8πH(Pi, Pi) −
1

2π

∫
B R
δi,n

(0)
log |rnx + δi,ny|

V(δi,ny + xi,n)
V(xi,n)

eûi,n(y)dy

+ 4 log rn + o(1)

= 8πH(Pi, Pi) −
1

2π

∫
B R
δi,n

(0)
log |x +

δi,n

rn
y|

V(δi,ny + xi,n)
V(xi,n)

eûi,n(y)dy

−
1

2π
log rn

∫
B R
δi,n

(0)

V(δi,ny + xi,n)
V(xi,n)

eûi,n(y)dy + 4 log rn + o(1)

= 8πH(Pi, Pi) + 4 log
1
|x|
+ log rn

4 − 1
2π

∫
B R
δi,n

(0)

V(δi,ny + xi,n)
V(xi,n)

eûi,n(y)dy

 + o(1)

= 8πH(Pi, Pi) + 4 log
1
|x|
+ o(1).

In the last line we use that, by [5],

λn

∫
BR(xi,n)

V(y)eũn(y)dy = 8π + o(λn).

Putting together the previous estimates, we have that

ūi,n(x)→ V(x) := 4 log
1
|x|
+ 8πH(Pi, Pi) +

∑
j,i

G(Pi, P j) in C1
loc(IR

2).

We let ξ̄n := ξn−xi,n

rn
. Then ∇ūi,n(ξ̄n) = ∇ũn(ξn) = 0 and |ξ̄n| = 1. Up to a subsequence, ξ̄n → ξ̄. The

previous convergence gives ∇V(ξ̄) = 0. This is a contradiction. Now we let Ω′ = Ω \ ∪m
i=1Bρ(Pi) and

we give an estimate on the critical points of ũn in Ω′. To this end, we observe that a solution ũn(x) to
Eq (1.7) is real analytic in a neighborhood of x0, for every x0 ∈ Ω, (one can see [23]). Moreover it is
known that ũn(x) → K(x) :=

∑m
i=1 8πG(x, Pi) in Ω′. The function K(x) is harmonic and non-trivial in

Ω′. Then it has only a finite number of critical points {z1, . . . , zl}, which are saddle points of finite
multiplicity m j ≥ 1 and indexz j (∇K) ≤ −1. Whenever indexz j (∇K) = −1, then z j is a nondegenerate
saddle point; see Proposition 5.1 in [2]. Moreover, we can adapt the proof of Proposition 5.2 in [2]
getting that ũn, for n large enough, has only a finite number of isolated critical points that we denote
by {z1,n, . . . , zln,n}. These points converge to the critical points {z1, . . . , zl} of K(x). Moreover
indexz j,n (∇un) ∈ {−1, 0, 1} and, whenever the index is 1, then z j,n is a nondegenerate maximum, while
whenever the index is −1, z j,n is a nondegenerate saddle point.

Finally, as in Proposition 5.3 and 5.4 in [2], we use the Poincarè Hopf formula with v = ∇ũn in Ω
(observe that by Hopf Lemma ∇ũn · ν < 0) to have

∑
indexz j,n (∇un) = χ(Ω), and by the first assertion,
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m+
∑
Cn

indexz j,n (∇un) = χ(Ω) = 1− k. The previous result on the critical points of ũn then implies that
ũn has at least m − k − 1 nondegenerate saddle points (of index −1) in Cn and concludes the proof.
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