This paper proposed a data-driven non-intrusive model order reduction (NIMOR) approach for parameterized time-domain Maxwell's equations. The NIMOR method consisted of fully decoupled offline and online stages. Initially, the high-fidelity (HF) solutions for some training time and parameter sets were obtained by using a discontinuous Galerkin time-domain (DGTD) method. Subsequently, a two-step or nested proper orthogonal decomposition (POD) technique was used to generate the reduced basis (RB) functions and the corresponding projection coefficients within the RB space. The high-order dynamic mode decomposition (HODMD) method leveraged these corresponding coefficients to predict the projection coefficients at all training parameters over a time region beyond the training domain. Instead of direct regression and interpolating new parameters, the predicted projection coefficients were reorganized into a three-dimensional tensor, which was then decomposed into time- and parameter-dependent components through the canonical polyadic decomposition (CPD) method. Gaussian process regression (GPR) was then used to approximate the relationship between the time/parameter values and the above components. Finally, the reduced-order solutions at new time/parameter values were quickly obtained through a linear combination of the POD modes and the approximated projection coefficients. Numerical experiments were presented to evaluate the performance of the method in the case of plane wave scattering.
Citation: Mengjun Yu, Kun Li. A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations[J]. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
This paper proposed a data-driven non-intrusive model order reduction (NIMOR) approach for parameterized time-domain Maxwell's equations. The NIMOR method consisted of fully decoupled offline and online stages. Initially, the high-fidelity (HF) solutions for some training time and parameter sets were obtained by using a discontinuous Galerkin time-domain (DGTD) method. Subsequently, a two-step or nested proper orthogonal decomposition (POD) technique was used to generate the reduced basis (RB) functions and the corresponding projection coefficients within the RB space. The high-order dynamic mode decomposition (HODMD) method leveraged these corresponding coefficients to predict the projection coefficients at all training parameters over a time region beyond the training domain. Instead of direct regression and interpolating new parameters, the predicted projection coefficients were reorganized into a three-dimensional tensor, which was then decomposed into time- and parameter-dependent components through the canonical polyadic decomposition (CPD) method. Gaussian process regression (GPR) was then used to approximate the relationship between the time/parameter values and the above components. Finally, the reduced-order solutions at new time/parameter values were quickly obtained through a linear combination of the POD modes and the approximated projection coefficients. Numerical experiments were presented to evaluate the performance of the method in the case of plane wave scattering.
[1] | W. F. Ames, Numerical Methods for Partial Differential Equations, New York: Academic Press, 1992. https://doi.org/10.1016/C2009-0-22234-3 |
[2] | J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-72067-8 |
[3] | J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Chichester: John Wiley & Sons, 2009. https://doi.org/10.1002/9780470749081 |
[4] | D. J. Lucia, P. S. Beran, W. A. Silva, Reduced-order modeling: new approaches for computational physics, Prog. Aerosp. Sci., 40 (2004), 51–117. https://doi.org/10.1016/j.paerosci.2003.12.001 doi: 10.1016/j.paerosci.2003.12.001 |
[5] | P. Benner, M. Ohlberger, A. Patera, G. Rozza, K. Urban, Model Reduction of Parametrized Systems, New York: Springer, 2017. https://doi.org/10.1007/978-3-319-58786-8 |
[6] | H. Peng, N. Song, Z. Kan, Data-driven model order reduction with proper symplectic decomposition for flexible multibody system, Nonlinear Dynam., 107 (2022), 173–203. https://doi.org/10.1007/s11071-021-06990-3 doi: 10.1007/s11071-021-06990-3 |
[7] | M. Guo, J. S. Hesthaven, Data-driven reduced order modeling for time-dependent problems, Comput. Methods Appl. Mech. Engrg., 345 (2019), 75–99. https://doi.org/10.1016/j.cma.2018.10.029 doi: 10.1016/j.cma.2018.10.029 |
[8] | M. Guo, J. S. Hesthaven, Reduced order modeling for nonlinear structural analysis using Gaussian process regression, Comput. Methods Appl. Mech. Engrg., 341 (2018), 807–826. https://doi.org/10.1016/j.cma.2018.07.017 doi: 10.1016/j.cma.2018.07.017 |
[9] | J. S. Hesthaven, G. Rozza, B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, New York: Springer, 2016. https://doi.org/10.1007/978-3-319-22470-1 |
[10] | Q. Wang, J. S. Hesthaven, D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384 (2019), 289–307. https://doi.org/10.1016/j.jcp.2019.01.031 doi: 10.1016/j.jcp.2019.01.031 |
[11] | K. Li, T. Z. Huang, L. Li, S. Lanteri, Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation, J. Sci. Comput., 87 (2021), 52. https://doi.org/10.1007/s10915-021-01467-2 doi: 10.1007/s10915-021-01467-2 |
[12] | A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, New York: Springer, 2015. https://doi.org/10.1007/978-3-319-15431-2 |
[13] | O. Lass, S. Volkwein, POD-Galerkin schemes for nonlinear elliptic-parabolic systems, SIAM J. Sci. Comput., 35 (2013), A1271–A1298. https://doi.org/10.1137/110848414 doi: 10.1137/110848414 |
[14] | K. Carlberg, M. Barone, H. Antil, Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330 (2017), 693–734. https://doi.org/10.1016/j.jcp.2016.10.033 doi: 10.1016/j.jcp.2016.10.033 |
[15] | Y. Li, H. Li, Y. Zeng, Z. Luo, A preserving accuracy two-grid reduced-dimensional Crank-Nicolson mixed finite element method for nonlinear wave equation, Appl. Numer. Math., 202 (2024), 1–20. https://doi.org/10.1016/j.apnum.2024.04.01 doi: 10.1016/j.apnum.2024.04.01 |
[16] | S. Lorenzi, A. Cammi, L. Luzzi, G. Rozza, POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), 151–179. https://doi.org/10.1016/j.cma.2016.08.006 doi: 10.1016/j.cma.2016.08.006 |
[17] | K. Li, T. Z. Huang, L. Li, S. Lanteri, A reduced-order DG formulation based on POD method for the time-domain maxwell's equations in dispersive media, J. Comput. Appl. Math., 336 (2018), 249–266. https://doi.org/10.1007/s00211-016-0802-5 doi: 10.1007/s00211-016-0802-5 |
[18] | S. Zhu, L. Dedé, A. Quarteroni, Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation, ESAIM Math. Model. Numer. Anal., 51 (2017), 1197–1221. https://doi.org/10.1051/m2an/2016056 doi: 10.1051/m2an/2016056 |
[19] | R. Li, Q. Wu, S. Zhu, Isogeometric analysis with proper orthogonal decomposition for elastodynamics, Commun. Comput. Phys., 20 (2021), 396–422. https://doi.org/10.4208/cicp.OA-2020-0018 doi: 10.4208/cicp.OA-2020-0018 |
[20] | X. F. He, L. Li, S. Lanteri, K. Li, Reduced order modeling for parameterized electromagnetic simulation based on tensor decomposition, IEEE J. Multiscale Multiphysics Comput. Tech., 8 (2023), 296–305. https://doi.org/10.1109/JMMCT.2023.3301978 doi: 10.1109/JMMCT.2023.3301978 |
[21] | P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2010), 5–28. https://doi.org/10.1017/S0022112010001217 doi: 10.1017/S0022112010001217 |
[22] | E. Kaiser, J. N. Kutz, S. L. Brunton, Data-driven discovery of Koopman eigenfunctions for control, Mach. Learn.: Sci. Technol., 2 (2021), 035023. https://doi.org/10.1088/2632-2153/abf0f5 doi: 10.1088/2632-2153/abf0f5 |
[23] | M. Korda, I. Mezić, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica, 93 (2018), 149–160. https://doi.org/10.1016/j.automatica.2018.03.046 doi: 10.1016/j.automatica.2018.03.046 |
[24] | H. Zhang, C. W. Rowley, E. A. Deem, L. N. Cattafesta, Online dynamic mode decomposition for time-varying systems, SIAM J. Appl. Dyn. Syst., 18 (2019), 1586–1609. https://doi.org/10.1137/18M1192329 doi: 10.1137/18M1192329 |
[25] | J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15 (2016), 142–161. https://doi.org/10.1137/15M1013857 doi: 10.1137/15M1013857 |
[26] | M. S. Hemati, C. W. Rowley, E. A. Deem, L. N. Cattafesta, De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets, Theor. Comp. Fluid. Dyn., 31 (2017), 349–368. https://doi.org/10.1007/s00162-017-0432-2 doi: 10.1007/s00162-017-0432-2 |
[27] | S. Le Clainche, J. M. Vega, Higher order dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 16 (2017), 882–925. https://doi.org/10.1137/15M1054924 doi: 10.1137/15M1054924 |
[28] | J. Duan, J. S. Hesthaven, Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems, J. Comput. Phys., 497 (2024), 112621. https://doi.org/10.1016/j.jcp.2023.112621 doi: 10.1016/j.jcp.2023.112621 |
[29] | L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3-D heterogeneous Maxwell equations on unstructured meshes, ESAIM Math. Model. Numer. Anal., 39 (2005), 1149–1176. https://doi.org/10.1051/m2an:2005049 doi: 10.1051/m2an:2005049 |
[30] | K. Li, T. Z. Huang, L. Li, S. Lanteri, L. Xu, B. Li, A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation, IEEE T. Antenn. Propag., 66 (2018), 242–254. https://doi.org/10.1109/TAP.2017.2768562 doi: 10.1109/TAP.2017.2768562 |
[31] | S. L. Brunton, J. N. Kutz, Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge: Cambridge University Press, 2022. https://doi.org/10.1017/9781009089517 |
[32] | C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936), 211–218. https://doi.org/10.1007/BF02288367 doi: 10.1007/BF02288367 |
[33] | T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455–500. https://doi.org/10.1137/07070111X doi: 10.1137/07070111X |
[34] | C. K. I. Williams, C. E. Rasmussen, Gaussian processes for regression, in Proceedings of the 8th International Conference on Neural Information Processing Systems, NIPS'95, Cambridge: MIT Press, 1995,514–520. https://dl.acm.org/doi/10.5555/2998828.2998901 |
[35] | A. Banerjee, D. B. Dunson, S. T. Tokdar, Efficient Gaussian process regression for large datasets, Biometrika, 100 (2013), 75–89. https://doi.org/10.1093/biomet/ass068 doi: 10.1093/biomet/ass068 |
[36] | S. L. Lohr, Sampling: Design and Analysis, New York: Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9780429296284 |
[37] | N. Song, C. Wang, H. Peng, J. Zhao, A study of mechanism-data hybrid-driven method for multibody system via physics-informed neural network, Acta Mech. Sin., 41 (2025), 524159. https://doi.org/10.1007/s10409-024-24159-x doi: 10.1007/s10409-024-24159-x |
[38] | N. Song, H. Peng, Z. Kan, A hybrid data-driven model order reduction strategy for flexible multibody systems considering impact and friction, Mech. Mach. Theory., 169 (2022), 104649. https://doi.org/10.1016/j.mechmachtheory.2021.104649 doi: 10.1016/j.mechmachtheory.2021.104649 |