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Abstract: This paper proposed a data-driven non-intrusive model order reduction (NIMOR)
approach for parameterized time-domain Maxwell’s equations. The NIMOR method consisted of
fully decoupled offline and online stages. Initially, the high-fidelity (HF) solutions for some training
time and parameter sets were obtained by using a discontinuous Galerkin time-domain (DGTD)
method. Subsequently, a two-step or nested proper orthogonal decomposition (POD) technique was
used to generate the reduced basis (RB) functions and the corresponding projection coefficients within
the RB space. The high-order dynamic mode decomposition (HODMD) method leveraged these
corresponding coefficients to predict the projection coefficients at all training parameters over a time
region beyond the training domain. Instead of direct regression and interpolating new parameters,
the predicted projection coefficients were reorganized into a three-dimensional tensor, which was
then decomposed into time- and parameter-dependent components through the canonical polyadic
decomposition (CPD) method. Gaussian process regression (GPR) was then used to approximate the
relationship between the time/parameter values and the above components. Finally, the reduced-order
solutions at new time/parameter values were quickly obtained through a linear combination of the
POD modes and the approximated projection coefficients. Numerical experiments were presented to
evaluate the performance of the method in the case of plane wave scattering.

Keywords: data-driven reduced-order modeling; proper orthogonal decomposition; high-order
dynamic mode decomposition; canonical polyadic decomposition; Gaussian process regression

1. Introduction

Parameterized partial differential equations (PDEs) have broad applications in scientific and
engineering fields. The numerical solutions can be obtained by some standard numerical
solvers [1–3], such as the finite element (FE), finite difference (FD), finite volume (FV),
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discontinuous Galerkin (DG), isogeometric analysis (IGA) method, etc. However, in multi-query and
real-time analysis, the parameterized PDE needs to be repeatedly solved at multiple parameter values,
resulting in a significant increase in computational complexity and cost. To address this issue, an
efficient surrogate modeling approach, also known as the reduced-order modeling (ROM) [4–6], is
proposed. The core principle of ROM is to approximate the full-order model (FOM) by constructing a
lower-dimensional model that retains the essential features within a controlled range of accuracy loss,
thereby reducing computation time and lowering CPU usage [7].

Over the past few decades, the development of ROM has achieved remarkable progress. The
reduced basis (RB) method, characterized by an offline-online framework, is an effective ROM
method for parameterized PDE [7–10]. During the offline stage, the FOM solutions at some
parameter and time values, also known as snapshots, are prepared for extracting the RB functions.
Two typical methods to generate the basis are the proper orthogonal decomposition (POD) method
and the Greedy algorithm. The former uses a compression strategy to construct the main base
information required by RB functions, while the latter iteratively generates the base functions [7].
Particularly, it should be noted that the Greedy method is not feasible for problems without a natural
criterion for the selection of snapshots [10]. So, we adopt a two-step or nested POD method [11],
which involves first obtaining the POD functions for each parameter value and then applying the POD
method to all functions. By splitting the process into two steps, it can better capture and preserve the
data characteristics at different parameter values, while also significantly reducing computational
complexity and storage requirements. During the online stage, the solutions for new parameter values
can be quickly estimated by linear combination of the POD basis and the corresponding projection
coefficients. For more detailed information about the RB method, we refer to [9, 12]. ROMs are
categorized into intrusive model order reduction (IMOR) and non-intrusive model order reduction
(NIMOR). In the IMOR method, the POD method combined with projection techniques [13, 14] are
usually used to reduce the complexity of above classical numerical methods [15–19]. Particularly, the
IMOR method requires access to the original FOM, leading to some expertise requirements for users
in terms of numerical calculations and analysis capabilities [11]. Meanwhile, the NIMOR method
eliminates the need of the original FOM by constructing the ROM from large datasets, i.e., allowing
the data to “tell the story” on its own. The NIMOR method has been applied to the parameterized
time-domain Maxwell’s equation [11, 20] recently. However, as an inherent drawback of the
interpolation or regression-based method, this NIMOR method cannot guarantee the extrapolation
results at the time/parameter values outside the coverage of training data.

An alternative approach to construct the surrogate model is the dynamic mode decomposition
(DMD) method, developed by Peter Schmid [21]. This method is also an ‘equation-free’ approach.
The DMD method excels at analyzing spatiotemporal coupled dynamical systems and is widely
employed for time-dependent problems. In the DMD method, some DMD modes are obtained
through the eigen-decomposition of high-dimensional data sequences. This allows the dynamic
system to be represented as a superposition of modes controlled by their eigenvalues, thereby
facilitating the prediction of future system behavior. In [22] and [23], researchers explore the use of
Koopman theory and the DMD method to analyze the evolutionary behavior of nonlinear dynamical
systems. To extend the applicability of the DMD method, some variants have been developed, such as
the online DMD method [24], the DMD method with control [25], and the noise-robust DMD
method [26]. Furthermore, the higher-order DMD method (HODMD) [27] extends the DMD method
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by incorporating snapshot data with multiple time delays, making it suitable for temporal modeling of
latent trajectories [28]. Compared to standard DMD, the HODMD method incorporates more time
delay information, enabling it to capture the dynamic features of the system with greater accuracy.
However, its direct application to parameterized problems remains challenging. Motivated by the
above problem, a multi-step NIMOR method composed of two-step POD, HODMD, canonical
polyadic decomposition (CPD), and Gaussian process regression (GPR) methods is developed for
parameterized electromagnetic simulation.

In this paper, we propose a data-driven NIMOR approach for parameterized time-domain
Maxwell’s equations. In the offline stage, the two-step POD method is employed to reduce the spatial
dimension of the full-order snapshot matrix, and the corresponding projection coefficients are
computed by using the projection theory. Subsequently, for each parameter, DMD modes based on the
HODMD method are constructed to predict the projection coefficients beyond the training period.
The predicted coefficients are then rearranged into a third-order tensor, which is decomposed into
time- and parameter-dependent components using the CPD method. Following this, the GPR method
provides a continuous approximation of these components. In the online stage, the reduced-order
solutions can be efficiently estimated at new time or parameter values using a simple linear
combination of POD functions and the predicted projection coefficients. The NIMOR (termed as
POD-HODMD-CPD) method proposed in this paper can effectively apply the HODMD method to
parameterization problems.

The remainder of the paper is organized as follows. Section 2 provides a brief introduction of
Maxwell’s equations. Section 3 offers an overview of the NIMOR method proposed in this paper.
Section 4 describes the construction of the NIMOR method. Section 5 presents some numerical
experiments to validate the proposed method. Conclusions are drawn in Section 6.

2. Full-order model

This study discusses the time-domain Maxwell’s equations governing electromagnetic scattering
problems 

vr
∂H(x, t)
∂t

+ curl(E(x, t)) = 0, ∀(x, t) ∈ Ω × T ,

εr
∂E(x, t)
∂t

− curl(H(x, t)) = 0, ∀(x, t) ∈ Ω × T ,

L(E(x, t),H(x, t)) = L
(
Einc(x, t),Hinc(x, t)

)
, ∀(x, t) ∈ ∂Ω × T ,

E(x, 0) = E0(x),H(x, 0) = H0(x), ∀x ∈ Ω,

(2.1)

where Ω is the spatial domain and T is the time domain; vr and εr are the relative electric permittivity
and magnetic permeability parameters, respectively; E =

(
Ex, Ey, Ez

)T
and H =

(
Hx,Hy,Hz

)T
denote

the electric field and magnetic field respectively; E0 and H0 are given the initial conditions; and L(·, ·)
is defined as

L(E(x, t),H(x, t)) = n × E(x, t) + Zn × (n ×H(x, t)) ,∀(x, t) ∈ ∂Ω × T . (2.2)

Here, ∂Ω is the boundary of Ω, n denotes the outward normal vector, and Z =
√

vr/εr. In this study,
we consider µ = (εr,1, εr,2, . . . , εr,p) ∈ P ⊂ Rp as the problem’s parameters with εr,i (i = 1, 2, · · · , p)
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being the relative permittivity in the i-th domain of Ω, P being the parameter domain, and p being the
number of parameters.

The spatial and temporal discretization of the governing equation can be performed by the DG and
second-order leaf-frog (LF2) methods respectively. The fully discrete scheme of the discontinuous
Galerkin time-domain (DGTD) method based on centered fluxes [29] is given by

Mεr
i

E(n+1)
h,i − E(n)

h,i

∆t
= KiH

(n+ 1
2 )

h,i −
∑
l∈νi

SilH
(n+ 1

2 )
h,l ,

Mvr
i

H(n+ 3
2 )

h,i −H(n+ 1
2 )

h,i

∆t
= −KiE(n+1)

h,i +
∑
l∈νi

SilE(n+1)
h,l ,

n = 0, 1, 2, · · · ,Mt − 1, (2.3)

where the time domain T = [0,T f ] is discretized intoMt equally spaced intervals as 0 = t0 < t1 <

· · · < tMt = T f with tn = n∆t for n ∈ {0, 1, . . . ,Mt}, and ∆t represents the time step size. The matrices
Mσ

i (σ ∈ {εr, vr}), Ki, and Sil denote the local mass matrix, local stiffness matrix, and local surface
matrix, respectively. Further details on the DGTD discrete technique can be found in [30]. The electric
and magnetic fields are then computed by element-wise and step-wise in a leap-frog manner

H(n+ 1
2 )

h,i

E(n)
h,i
−−→ E(n+1)

h,i

H(n+ 1
2 )

h,i
−−−−−→ H(n+ 3

2 )
h,i , n = 0, 1, 2, · · · ,Mt − 1. (2.4)

3. An overview of POD-HODMD-CPD method

In order to clearly describe the proposed NIMOR in this paper, an overview of the POD-HODMD-
CPD method is first presented as follows:

Ptr =
{
µ1, µ2, · · · , µNp

}
⊂ P,

Ttr =
{
tn1 , tn2 , · · · , tnNt

}
⊂ [0,Ttrain ] ⊂ T , tnk = nk∆t, k = 1, . . . ,Nt,

Thodmd =
{
tn1 , tn2 , · · · , tnNt

, tnNt+1 , · · · , tnNd

}
⊂ T ,

Ptest =
{
µtest

1 , µ
test
2 , · · · , µ

test
np

}
⊂ P,

Ttest =
{
ttest
1 , t

test
2 , . . . , t

test
nt

}
⊂ T ,

(3.1)

where Ptr is the training parameter set and Ttr is the training time set; Thodmd is the time set used to
predict the projection coefficients using the HODMD method, Ptest is the testing parameter set, and
Ttest is the testing time set. For each parameter µ j ∈ Ptr, the high-fidelity (HF) solution matrix Su, j

of Eq (2.1) at any tnk ∈ Ttr can be obtained by using well-established numerical methods. The snapshot
matrix for all training parameters µ j ∈ Ptr is recorded as Eq (4.2).

The goal of this study is to approximate the solution manifold

Sh = {uh(t, µ) | t ∈ T , µ ∈ P ⊂ Rp} ⊂ RNh , (3.2)

where Nh represents the number of the degree of freedom (DoF) in the DGTD method. In the offline
stage, the two-step POD method based on projection theory is used to construct an Nu-dimensional
manifold

Mh =
{
Qu(t, µ) = VT

u uh(t, µ) | t ∈ Ttr ⊂ T , µ ∈ Ptr ⊂ R
p
}
⊂ RNu , u ∈ {E,H}, (3.3)
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where the matrix Vu ∈ R
Nh×Nu is formed by the first Nu left singular vectors of the snapshot matrix

Su, and Qu(t, µ) denotes the projection coefficient. Next, the HODMD method is utilized for time
extrapolation of the reduced-order coefficients for µ ∈ Ptr

MD
h =

{
QD

u (t, µ) = fhodmd(t, µ) | t ∈ Thodmd, µ ∈ Ptr ⊂ R
p
}
⊂ RNu , (3.4)

where fhodmd(·, µ) is the mapping between time and projection coefficients established by the HODMD
method. Subsequently, the tensor Xu is constructed as an assembly of the reassembled QD

u (t, µ), which
is then decomposed into three factor matrices Φu =

[
ϕu,1, · · · ,ϕu,Ru

]
, Ψu =

[
ψu,1, · · · ,ψu,Ru

]
, and

Ξu =
[
ξu,1, · · · , ξu,Ru

]
by using the CPD method, where these factor matrices collectively reconstruct

the original tensor through outer products, i.e.,

[Φu,Ψu,Ξu] = CPD(Xu). (3.5)

After that, the continuous modes ϕ̂u,r(t) and ψ̂u,r(µ) are then approximated by the GPR regression

t
GPR method
−−−−−−−−→ ϕ̂u,r(t), and µ

GPR method
−−−−−−−−→ ψ̂u,r(µ), r = 1, 2, · · · ,Ru. (3.6)

Finally, the predicted projection coefficients can be computed by

M̂h =
{
Q̂u(t, µ) ≈ ϖ(t, µ, ϕ̂u,r, ψ̂u,r, ξu,r) | t ∈ T , µ ∈ P

}
⊂ RNu , (3.7)

where ϖ is the mapping between input parameters (t, µ) and predicted projection coefficients. In the
online stage, the reduced-order solution urb

h (t, µ) can be calculated by

uh (t, µ) ≈ urb
h (t, µ) = VuQ̂u(t, µ) ∈ RNh , (t, µ) ∈ T × P, (3.8)

where uh (t, µ) denotes the HF solution, Vu is the POD basis, and Q̂u(t, µ) is the predicted projection
coefficient. In this study, the predicted projection coefficient is computed by HODMD, CPD, and GPR
methods for new time and parameter.

4. Non-intrusive reduced-order modeling

4.1. Two-step POD method

For parameterized time-domain problems, we utilize the two-step POD approach for ROM. From
the parameter domain P, we sample a training parameter set Ptr =

{
µ1, µ2, · · · , µNp

}
. For µ j ∈ Ptr, one

can obtain the HF solutions to Eq (2.1) through the DGTD solver. We equidistantly selectNt transient
solutions {uh(ti, µ j)}

Nt
i=1 in Ttr =

{
tn1 , tn2 , · · · , tnNt

}
⊂ T . Futhermore, we form the snapshot matrices

Su, j ∈ R
Nh×Nt (u ∈ {E,H}) for each parameter µ j ∈ Ptr

Su, j =


uh,1

(
tn1 , µ j

)
uh,1

(
tn2 , µ j

)
· · · uh,1

(
tnNt
, µ j

)
uh,2

(
tn1 , µ j

)
uh,2

(
tn2 , µ j

)
· · · uh,2

(
tnNt
, µ j

)
...

...
. . .

...

uh,Nh

(
tn1 , µ j

)
uh,Nh

(
tn2 , µ j

)
· · · uh,Nh

(
tnNt
, µ j

)
 ∈ R

Nh×Nt , j = 1, 2, · · · ,Np, (4.1)
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and the snapshot matrix for all parameters

Su =
(
Su,1 | Su,2 | · · · | Su,Np

)
∈ RNh×Ns , (4.2)

whereNh is the number of DoF, andNs = Nt ·Np denotes the number of all snapshots. In the ROM, one
need to construct a smaller dimension reduced space Vu,rb with dimension Nu ≪ min {Nh,Ns}. The
reduced spaceVu,rb spanned by a set of RB functions independent of time and parameters is expressed
as

Vu,rb = span
{
vu,1, vu,2, · · · , vu,Nu

}
. (4.3)

In the POD method, the singular value decomposition (SVD) [31] on Su is performed as

WT
u SuZu =

(
Σru×ru Oru×(Ns−ru)

O(Nh−ru)×ru O(Nh−ru)×(Ns−ru)

)
, (4.4)

where Wu =
[
wu,1,wu,2, · · · ,wu,Nh

]
∈ RNh×Nh and Zu =

[
zu,1, zu,2, · · · , zu,Ns

]
∈ RNs×Ns are orthogonal

matrices; Σru×ru = diag (σu,1, σu,2, . . . , σu,ru) contains the singular values σu,1 ≥ σu,2 ≥ · · · ≥ σu,ru > 0
in descending order, and ru is the rank of Su. According to the Eckart-Young theorem [32], the RB or
POD bases are the firstNu left singular vectors of Wu, which is represented as

{
vu,i

}Nu
i=1 with vu,i = wu,i.

Nu is the smallest integer such that

Nu = argmin {E(Nu) ≥ 1 − ρ} , (4.5)

with E(Nu) =
∑Nu

i=1 σ
2
u,i/

∑ru
i=1 σ

2
u,i and ρ being the relative error tolerance used to control the accuracy

of POD. The error bound can be calculated by (Nu + 1)-th to ru-th singular values as

Ns∑
i=1

∥∥∥Su(:, i) − VuVT
u Su(:, i)

∥∥∥2

RNh
=

Np∑
j=1

Nt∑
i=1

∥∥∥Su, j(:, i) − VuVT
u Su, j(:, i)

∥∥∥2

RNh

=

ru∑
i=Nu+1

σu,i
2,

(4.6)

where Su, j(:, i) is the i-th column of Su, j ( j = 1, 2, · · · ,Np), and Vu = [vu,1, vu,2, · · · , vu,Nu] denotes the
RB or POD basis matrix. However, performing SVD on a large-scale matrix is extremely expensive
and requires substantial computational resources. Therefore, we do not directly perform the SVD
method on Su. Instead, we adopt the two-step POD method, which is shown in Algorithm 1.

According to the projection theory [20], the HF solution uh(t, µ) can be approximated as

uh(t, µ) ≈ urb
h (t, µ) = VuQu(t, µ) =

Nu∑
i=1

Qu,i(t, µ)vu,i, u ∈ {E,H}, (4.7)

with the projection coefficient Qu(t, µ) =
[
Qu,1(t, µ),Qu,2(t, µ), · · · ,Qu,Nu(t, µ)

]T
∈ RNu . Particularly,

for all traing time/parameter values, the projection vectors can be calculated by

Qu(tni , µ j) = VT
u uh(tni , µ j) ∈ RNu , (tni , µ j) ∈ Ttr × Ptr, (4.8)

which can be used as the training data.
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Algorithm 1 Two-step POD method
Input: Time trajectory matrix Su, j ( j = 1, 2, · · · ,Np, u ∈ {E,H}), and truncation tolerance ρt and ρµ
Output: POD basis matrix Vu (u ∈ {E,H})

1: for j = 1 to Np do
2: Compute the compressed matrices Tu, j = POD(Su, j, ρt)
3: end for
4: Tu =

[
Tu,1

∣∣∣Tu,2
∣∣∣ · · · | Tu,Np

]
5: Vu = POD(Tu, ρµ)

6: function V = POD(A, ρ) do
7: [W,Σ,Z] = SVD(A)
8: k = argmin {E(k) ≥ 1 − ρ} with E(k) =

∑k
i=1 σ

2
i /

∑r
i=1 σ

2
i being the relative information centent,

where r is the rank of A and σi is the singular value of A
9: V =W(:, 1 : k)

10: end function

4.2. HODMD method

For a fixed parameter value µ j ∈ Ptr ( j = 1, 2, · · · ,Np), one can get the following two matrices
(whose columns are the reduced-order coefficient vectors at training parameter)

X j
u =

[
Qu(tn1 , µ j),Qu(tn2 , µ j), · · · ,Qu(tnNt−1 , µ j)

]
∈ RNu×(Nt−1), u ∈ {E,H}, (4.9)

and
Y j

u =
[
Qu(tn2 , µ j),Qu(tn2 , µ j), · · · ,Qu(tnNt

, µ j)
]
∈ RNu×(Nt−1) u ∈ {E,H}. (4.10)

Using the Koopman operator or matrix K j
u ∈ R

Nu×Nu to characterize the relationship at any adjacent
time step, i.e., Qu(tni+1 , µ j) = K j

uQu(tni , µ j), the relationship between the old and new state matrix is
then given by

Y j
u = K j

uX j
u. (4.11)

Let † be the Moore-Penrose pseudo-inverse. One can find the matrix Y j
u = K j

u(X j
u)† is a best-fit linear

operator relating X j
u to Y j

u. However, this calculation is expensive and often difficult to handle.
Therefore we adopt another method, in which the DMD method can be implemented by the
Algorithm 2 for the approximation of the eigenvalues and eigenvectors of K j

u based on the datasets
X j

u and Y j
u. The evolution of the reconstructed system can then be computed via the formula

yu(t) = Φ j
u(Λu

j)t/∆tb j
u,0, where b j

u,0 = (Φ j
u)†y j

u,0 is the vector of initial coefficients and y j
u,0 ∈ R

Nu is the
projection vectors at the initial time.

However, the standard DMD method faces limitations when Nt ≥ Nu. To address this problem, we
consider the HODMD method [21], which introduces a higher-order Koopman assumption

Qu(tni+s , µ j) = Ku,1Qu(tni , µ j) +Ku,2Qu(tni+1 , µ j) + . . . +Ku,sQu(tni+s−1 , µ j), (4.12)

for i = 1, 2, . . . ,Nt − s. Eq (4.12) can be expressed as more compact

Q̃u(tni+1 , µ j) = K̃uQ̃u(tni , µ j), (4.13)
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Algorithm 2 DMD method

Input: Matrices X j
u and Y j

u ( j = 1, 2, · · · ,Np,u ∈ {E,H})
Output: DMD modes Φ j

u, and eigenvalue matrix Λ j
u ( j = 1, 2, · · · ,Np,u ∈ {E,H})

1: Perform r jth-truncated SVD on X j
u ≈W j

uΛ
j
u(Z j

u)T with r j being the rank of X j
u

2: Construct the reduced Koopman operator matrix K̂ j
u:

K̂ j
u = (W j

u)T K j
uW j

u

= (W j
u)T (Y j

u(X j
u)†)W j

u

≈ (W j
u)T Y j

u(W j
uΛ

j
u(Z j

u)T )†W j
u

≈ (W j
u)T Y j

uZ j
u(Λ j

u)−1

3: Perform the eigen-decomposition of K̂ j
uT j

u = T j
uΛ

j
u with the eigenvalues matrix Λ j

u and the
eigenvectors matrix T j

u

4: Compute the DMD mode Φ j
u = Y j

uZ j
u(Λ j

u)−1T j
u

where the modified projection vector Q̃u and the modified Koopman operator K̃u respectively take the
following form:

Q̃u(tni , µ j) =


Qu(tni , µ j)

Qu(tni+1 , µ j)
. . .

Qu(tni+s−2 , µ j)
Qu(tni+s−1 , µ j)


∈ R(sNu)×(Nt−1),

K̃u =


0 I 0 . . . 0 0
0 0 I . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . I 0
Ku,1 Ku,2 Ku,3 . . . Ku,s−1 Ku,s


∈ R(sNu)×(sNu).

(4.14)

In particular, the standard DMD method in Algorithm 2 can be also applied to obtain the higher-order
Koopman operator K̃u and the corresponding modes.

4.3. Approximation of the reduced-order matrices

The HODMD method has been developed for µ j ∈ Ptr to approximate their corresponding
projection coefficients in the space Ttr. Subsequently, the projection coefficients for these parameters
over the time period Thodmd =

{
tn1 , tn2 , · · · , tnNt

, tnNt+1 , · · · , tnNd

}
, which is larger than Ttr, can be

predicted using the HODMD method. In other words, the HODMD method can extrapolate the
projection coefficients beyond the initial training period. So, one can obtain the matrices

QD, j
u =

(
QD

u

(
tn1 , µ j

)
, · · · ,QD

u

(
tnNt
, µ j

)
,QD

u

(
tnNt+1 , µ j

)
, · · · ,QD

u

(
tnNd
, µ j

))
∈ RNu×Nd , j = 1, · · · ,Np, (4.15)

where QD
u

(
tni , µ j

)
∈ RNu is the projection coefficient vector by the HODMD method for (tni , µ j) ∈

Thodmd × Ptr. To establish relationships between time/parameter values and projection coefficients, we
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select the l-th row from each matrix QD, j as the column of a new matrix Qu,l

Qu,l =


QD

u,l(tn1 , µ1) QD
u,l(tn1 , µ2) · · · QD

u,l(tn1 , µNp),
QD

u,l(tn2 , µ1) QD
u,l(tn2 , µ2) · · · QD

u,l(tn2 , µNp)
...

...
. . .

...

QD
u,l(tNd , µ1) QD

u,l(tNd , µ2) · · · QD
u,l(tNd , µNp)

 ∈ R
Nd×Np , l = 1, 2, · · · ,Nu. (4.16)

Instead of using matrix regression or interpolation directly, we concatenate the matrix Qu,l as frontal
slices to form a third-order tensor Xu of dimensions (Nd,Np,Nu). Then, the CPD factorizes Xu into a
sum of rank-one component tensors

Xu ≈

Ru∑
r=1

ϕu,r ◦ ψu,r ◦ ξu,r, (4.17)

where Ru ≤ min
{
NdNp,NdNu,NpNu

}
is a positive integer that determines the error of CPD, the

symbol ◦ represents the vector outer product, and ϕu,r ∈ R
Nd , ψu,r ∈ R

Np , and ξu,r ∈ R
Nu are all rank-

one vectors. Let Φu =
[
ϕu,1, · · · ,ϕu,Ru

]
, Ψu =

[
ψu,1, · · · ,ψu,Ru

]
, and Ξu =

[
ξu,1, · · · , ξu,Ru

]
be the factor

matrices. When the column vectors of these factor matrices are normalized to length-one, it means that
the weights of the different vectors can be separated. Thus, the CPD of Xu can be represented as

Xu ≈ [λ;Φu,Ψu,Ξu] ≡
Ru∑
r=1

λrϕu,r ◦ ψu,r ◦ ξu,r, (4.18)

which can be also written as

(Xu)i jl ≈

Ru∑
r=1

λr

(
ϕu,r

)
i

(
ψu,r

)
j

(
ξu,r

)
l
. (4.19)

In this study, we adopt an alternating least squares (ALS) method in Algorithm 3 for CPD with Ru

components, where Xu(n) denotes the mode-n unfolding of tensor Xu, and ⊙ and ⊛ respectively denote
the Khatri-Rao product and Hadamard product. A† denotes the Moore-Penrose pseudo-inverse of A.
For further details about tensor decomposition, we refer to [33].

With the discrete datasets, one can use the GPR method [34, 35] to approximate the corresponding
continuous modes, i.e.,

t 7−→ ϕ̂u,r(t) with
{(

tni ,
(
ϕu,r

)
i

)
, i = 1, 2, · · · ,Nd

}
, (4.20)

µ 7−→ ψ̂u,r(µ) with
{(
µ j,

(
ψu,r

)
j

)
, j = 1, 2, · · · ,Np

}
, (4.21)

for r = 1, 2, · · · ,Ru. Then, we have

(Xu)i jl ≈
(
X̂u

)
i jl
≈

Ru∑
r=1

λrϕ̂u,r
(
tni

)
ψ̂u,r

(
µ j

) (
ξu,r

)
l
, 1 ≤ i ≤ Nd, 1 ≤ j ≤ Np, 1 ≤ l ≤ Nu. (4.22)
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Algorithm 3 ALS method for CPD of the projection coefficient tensor Xu

Input: Projection coefficient tensor Xu ∈ R
Nd×Np×Nu , a truncation value Ru

Output: Factor matrices Φu =
[
ϕu,1, · · · ,ϕu,Ru

]
,Ψu =

[
ψu,1, · · · ,ψu,Ru

]
, and Ξu =

[
ξu,1, · · · , ξu,Ru

]
1: Initialize Φu ∈ R

Nd×Ru , Ψu ∈ R
Np×Ru , and Ξu ∈ R

Nu×Ru

2: repeat
3: Φu = Xu(1) (Ξu ⊙ Ψu)

(
ΞT

uΞu ⊛ Ψ
T
uΨu

)†
4: Ψu = Xu(2) (Φu ⊙ Ξu)

(
ΦT

uΦu ⊛ Ξ
T
uΞu

)†
5: Ξu = Xu(3) (Ψu ⊙ Φu)

(
ΨT

uΨu ⊛ Φ
T
uΦu

)†
6: Normalize columns of Φu,Ψu,Ξu, and storing norms as λ
7: until fit ceases to improve or maximum iterations exhuasted

The approximation of projection coefficient matrix Qu(t, µ) can be written as

Q̂u(t, µ) ≈
Ru∑
r=1

λrϕ̂u,r (t) ψ̂u,r (µ) ξu,r. (4.23)

For a new time/parameter value (t∗, µ∗), the RB solution is finally recovered as

urb
h (t∗, µ∗) = VuQ̂u (t∗, µ∗) = Vu

Ru∑
r=1

λrϕ̂u,r (t∗) ψ̂u,r (µ∗) ξu,r, (t∗, µ∗) ∈ T × P,u ∈ {E,H}. (4.24)

The process of the proposed NIMOR method is shown in Algorithm 4.

Algorithm 4 POD-HODMD-CPD method

1: function [Vu, ϕ̂u,r, ψ̂u,r, ξu,r] = POD-HODMD-CPDoffline(T ,P) do
2: Prepare the training time and parameter sampling Ttr =

{
tn1 , tn2 , · · · , tnNt

}
⊂ T and Ptr ={

µn1 , µn2 , · · · , µnNp

}
⊂ P

3: Compute the HF solutions uh(tni , µn j) for (tni , µn j) ∈ Ttr × Ptr via the DGTD solver, and form the
snapshot matrix Su, j

4: Extract the POD basis matrix Vu via the two-step POD method in Algorithm 1
5: Compute the HODMD modes Φ j

u for each µ j ∈ Ptr over Ttr in Algorithm 2
6: Obtain the projection coefficient matrices QD, j

u for each µ j ∈ Ptr over Thodmd by HODMD method
7: Perform CPD for the projection coefficient tensor Xu via the ALS method in Algorithm 3
8: Build the GPR-based modes ϕ̂u,r and ψ̂u,r based on Eqs (4.20) and (4.21)
9: end function

10: function ur
h (t∗, µ∗) = POD-HODMD-CPD online(Vu, ϕ̂u,r, ψ̂u,r, ξu,r, (t

∗, µ∗)) do
11: Calculate the projection coefficient Q̂u (t∗, µ∗) through the GPR-based modes ϕ̂u,r and ψ̂u,r, and ξu,r

12: Evaluate the RB solution urb
h (t∗, µ∗) via Eq (4.24)

13: end function
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5. Numerical results

In this section, some numerical experiments including the scattering of a plane wave by a dielectric
disk, and by a multilayer disk are presented to validate the effectiveness and the accuracy of the
proposed NIMOR method. Particularly, we consider the solutions of 2-D time-domain Maxwell’s
equations for the transverse magnetic (TM) waves, i.e., E = (0, 0, Ez)T and H =

(
Hx,Hy, 0

)T

in Eq (2.1). The excitation is an incident plane wave, which is defined as
Hinc

x (x, y, t) = 0,

Hinc
y (x, y, t) = − cos(ωt − kx),

Einc
z (x, y, t) = cos(ωt − kx),

(5.1)

where ω = 2π f represents the angular frequency with the wave frequency f = 300MHz. k =
ω

c
is

the wave number, and c is the speed of the wave in a vacuum. In order to evaluate the accuracy of
numerical experiments, some relative errors are defined as

eu,Pro(ttest, µtest) =

∥∥∥uh(ttest, µtest) − VuVT
u uh(ttest, µtest)

∥∥∥
RNh

∥uh(ttest, µtest)∥RNh

, (5.2)

eu,NIMOR(ttest, µtest) =

∥∥∥∥uh(ttest, µtest) − VuQ̂u(ttest, µtest)
∥∥∥∥
RNh

∥uh(ttest, µtest)∥RNh

, (5.3)

and the average relative errors are defined as

ēu,Pro =

∑
ttest

∑
µtest

eu,Pro(ttest, µtest)
Nttest Nµtest

, (5.4)

ēu,NIMOR(ttest, µtest) =
∑

ttest

∑
µtest

eu,NIMOR(ttest, µtest)
Nttest Nµtest

, (5.5)

where the testing parameter set Ptest is generated by the randomized Latin-Hypercube-Sampling (LHS)
method [36], and the testing time set Ttest is uniformly selected throughout the physical simulation.
Nttest and Nµtest are respectively the numbers of the testing time and parameter values. The DGTD and
NIMOR methods are implemented in MATLAB and all simulations are run on a workstation equipped
with an Intel Core i7-10700F CPU running at 2.90 GHz, and with 16 GB of RAM memory. All SVDs
are implemented via the MATLAB function svd.

5.1. Scattering of a plane wave by a dielectric disk

We first consider the electromagnetic scattering of the plane wave by a dielectric disk. The
computation domain is the square Ω = [−2.6, 2.6] × [−2.6, 2.6]. The radius of the disk is 0.6. The
range of the relative permittivity of the disk is [1, 5] (i.e., P = {µ : µ = εr ∈ [1, 5]}) , and the relative
permeability is set to be vr = 1 (i.e., nonmagnetic material). The medium exterior to the disk is
assumed to be vacuum.

During the offline stage, the DGTD solver is utilized to acquire the HF solutions for Np = 81
training parameter values in the set Ptr = {1, 1.05, 1.10, · · · , 4.95, 5} generated by uniform sampling
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between 1 and 5. The overall simulation duration is defined as 50 periods, which is equivalent to 50 m
in normalized units with a time step ∆t = 3.678 × 10−3 m. For each training parameter, the training
snapshots are uniformly sampled from 49 m to 49.7 m in the set
Ttr = {49.0024 m, 49.006 m, · · · , 49.6938 m, 49.6975 m}. The testing parameter set Ptest,
consisting of 40 parameters generated by the LHS method, and the testing time set Ttest with
Nt = 263 time points, covering the last period Ttest = Ttr ∪ {49.7012 m, . . . , 49.966 m}, are employed
to assess the proposed method. Due to the large dimensionality of the snapshots Su, we employ a
two-step POD method to extract the RB functions. When the truncation parameter is set to be Ru = 40
in the CPD method, the convergence curves of the average relative error ēu,Pro and ēu,NIMOR along with
the truncation tolerances (ρt, ρµ) and the time-delay parameter s are plotted in Figure 1.
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Figure 1. Scattering of a plane wave by a dielectric disk: the convergence curves of (a) ēE,Pro

and ēE,NIMOR, and (b) ēH,Pro and ēH,NIMOR with the truncation tolerances (ρt, ρµ) based on two-
step POD and the time-delay parameter s based on HODMD.
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Combining Figures 1a,b, one can choose s = 10 for the HODMD method, and select ρt = 1 × 10−3,
ρµ = 1 × 10−5 in the two-step POD method to extract a set of LHx = 139, LHy = 21, and LEz = 22
RB functions. The NIMOR average relative error ēu,NIMOR for different truncation parameters Ru are
displayed on Figure 2.
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Figure 2. Scattering of a plane wave by a dielectric disk: the average relative error ēu,NIMOR

for different truncation parameters Ru.

The corresponding projection and NIMOR errors for Ru = 40, ρt = 1 × 10−3, ρµ = 1 × 10−5, and
s = 10 are shown in Table 1.

Table 1. Scattering of plane wave by a dielectric disk: the average projection and NIMOR
errors on the testing set.

Average relative error eE,Pro eE,NIMOR eH,Pro eH,NIMOR

Value 1.175% 1.768% 1.069% 1.668%

The approximate reduced-order coefficients and the corresponding exact values are shown in
Figure 3. By comparison, the HODMD method performs very well in the prediction.

During the online stage, the reduced-order solutions at some selected testing parameters µ1 = 1.215,
µ2 = 2.215, µ3 = 3.215, and µ4 = 4.215 are computed to assess the performance of the NIMOR
method. To observe the visual effects of the electromagnetic field in the Fourier domain during the last
oscillation period of the incident wave, we display the 1-D x-wise appearance of the real part of Ez

and Hy along y = 0 in Figure 4, and their 2-D distributions in Figures 5 and 6. It can be observed that
the reduced-order solutions match the DGTD solutions very well. Figure 7 shows the time evolution
of the relative errors eu,Pro and eu,NIMOR for the four testing parameters in the testing time region Ttest.
The computing time of the offline stage and the comparison between the online stage and the DGTD
method are shown in Tables 2 and 3.
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Figure 3. Scattering of a plane wave by a dielectric disk: the approximate reduced-order
coefficients and the corresponding exact values of Hx (top), Hy (middle), and Ez (below) in
Ttest for all training parameters, where [49.7 m, 50 m] is the prediction time region. The
dashed line represents the end of the training time domain.
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Figure 4. Scattering of a plane wave by a dielectric disk: the 1-D x-wise appearance of the
real part of DGTD and NIMOR solutions of Hy (left) and Ez (right) along y = 0 with the four
testing parameters µ1 = 1.215 (a)–(b), µ2 = 2.215 (c)–(d), µ3 = 3.215 (e)–(f), and µ4 = 4.215
(g)–(h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Scattering of a plane wave by a dielectric disk: comparison of the 2-D distribution
of the real part of Hy of NIMOR (left) and DGTD (right) for the four testing parameters
µ1 = 1.215 (a)–(b), µ2 = 2.215 (c)–(d), µ3 = 3.215 (e)–(f), and µ4 = 4.215 (g)–(h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Scattering of a plane wave by a dielectric disk: comparison of the 2-D distribution
of the real part of Ez of NIMOR (left) and DGTD (right) for the four testing parameters
µ1 = 1.215 (a)–(b), µ2 = 2.215 (c)–(d), µ3 = 3.215 (e)–(f), and µ4 = 4.215 (g)–(h).
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Figure 7. Scattering of a plane wave by a dielectric disk: the time evolution to the relative
errors eu,Pro and eu,NIMOR of E (left) and H (right) for the four testing parameters in the testing
time region Ttest.

Table 2. Scattering of a plane wave by a dielectric disk: the computing time of the offline
stage. The unit of time cost is second.

offline stage
(HF solutions Nested POD HODMD training ALS-based CPD GPR training)
3.948 × 104 3.580 × 101 6.010 2.148 × 10−1 1.315 × 101

Table 3. Scattering of a plane wave by a dielectric disk: comparison of the computing time
between online stage and DGTD. The unit of time cost is second.

online stage
(one run for new parameters) DGTD
3.041 × 10−1 4.874 × 102

5.2. Scattering of a plane wave by a multilayer disk

Next, we consider a high-dimensional parameter problem in the case of the scattering of a plane
wave by a multilayer disk. The computation domain is the square Ω = [−3.2, 3.2] × [−3.2, 3.2]. The
radius of each layer of the multilayer disk and the relative permeability are presented in Table 4.

Table 4. Distribution and range of material parameters.
Layer i P(i) vr,i ri

1 εr,1 ∈ [5.0, 5.6] 1 0.15
2 εr,2 ∈ [3.25, 3.75] 1 0.3
3 εr,3 ∈ [2.0, 2.5] 1 0.45
4 εr,4 ∈ [1.25, 1.75] 1 0.6
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The medium exterior of the multilayer disk is still assumed to be a vacuum. The range of the relative
permittivity is formed as µ = (εr,1, εr,2, εr,3, εr,4) ∈ P.

During the offline stage, the HF solutions are generated in a training parameter set Ptr chosen by
the Smolyak sparse grid method with an approximation level of L = 3. The simulation duration is also
50 m with a time step ∆t = 3.800 × 10−3 m. For each training parameter, the training snapshot vectors
are uniformly sampled from 49 m to 49.7 m with the training time set
Ttr = {49.000 m, 49.004 m, . . . , 49.6945 m, 49.6984 m}. The testing parameter set Ptest, consisting of
81 parameters generated by the LHS method, and the testing time set Ttest with Nt = 254 time points,
covering the last period Ttest = Ttr ∪ {49.7012 m, . . . , 49.966 m}, are employed to assess the proposed
method. When the truncation parameter is set to be Ru = 20, Figure 8 shows the convergence curves
of the average relative error ēu,Pro and ēu,NIMOR along with the truncation tolerances (ρt, ρµ) and the
time-delay parameter s.
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Figure 8. Scattering of a plane wave by a multilayer disk: the convergence curves of (a)
ēE,Pro and ēE,NIMOR, and (b) ēH,Pro and ēH,NIMOR with the truncation tolerances (ρt, ρµ) based on
two-step POD and the time-delay parameter s based on HODMD.
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Combining Figures 8a,b, one can choose ρt = 1 × 10−3 and ρµ = 1 × 10−5. With the truncation
tolerances ρt = 1× 10−3 and ρµ = 1× 10−5, the reduced basis functions composed by a set of LHx = 16,
LHy = 15, and LEz = 15 are extracted in the two-step POD method. Figure 9 shows the NIMOR average
relative error ēu,NIMOR for different truncation parameters in the CPD, and one can choose Ru = 25. The
corresponding average projection and NIMOR errors are displayed on the testing set in Table 5. Some
approximate reduced-order coefficients and their corresponding exact values, both within the testing
time set Ttest and the training parameter set Ptr, are shown in Figure 10.
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Figure 9. Scattering of a plane wave by a multilayer disk: the average relative error ēu,NIMOR

for different truncation parameters Ru.

Table 5. Scattering of plane wave by a multi-layer disk: the average projection and NIMOR
errors on the testing set.

Error eE,Pro eE,NIMOR eH,Pro eH,NIMOR

Value 0.762% 1.035% 0.673% 0.950%
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Figure 10. Scattering of a plane wave by a multilayer disk: the approximate reduced-order
coefficients and the exact values of Ez in Ttest for all training parameters. The dashed line
represents the end of the training time domain.
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The reduced-order solutions at four testing parameters µ1 = {5.125, 3.375, 2.125, 1.375},
µ2= {5.425, 3.625, 2.425, 1.625}, µ3= {5.125, 3.625, 2.125, 1.625}, µ4= {5.425, 3.375, 2.425, 1.375} are
computed to assess the performance of the NIMOR method during the online stage. The time
evolution solutions of the NIMOR method and the DGTD method are shown in Figure 11.
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Figure 11. Scattering of a plane wave by a multilayer disk: comparison of the time evolution
of the fields Hx (top), Hy (middle), and Ez (bottom) for the four testing parameters in Ttest.

The time evolution of the relative errors eu,Pro and eu,NIMOR for the four testing parameters in the
testing time region Ttest are displayed in Figure 12.
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Figure 12. Scattering of a plane wave by a multilayer disk: the time evolution of the relative
errors eu,Pro and eu,NIMOR for the four testing parameters in the testing time region Ttest.
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We display the 1-D x-wise appearance of the real part of Hy and Ez along y = 0 in Figure 13. The
2-D distribution of Hx,Hy, Ez for µ2 = {5.425, 3.625, 2.425, 1.625} is shown in Figure 14.

-2 0 2

x

-2

-1

0

1

2

3

Hy

(a)

-2 0 2

x

-1

-0.5

0

0.5

1

1.5

2

Ez

(b)

-2 0 2

x

-2

-1

0

1

2

3

Hy

(c)

-2 0 2

x

-1

-0.5

0

0.5

1

1.5

2

Ez

(d)

-2 0 2

x

-2

-1

0

1

2

3

Hy

(e)

-2 0 2

x

-1

-0.5

0

0.5

1

1.5

2

Ez

(f)

-2 0 2

x

-2

-1

0

1

2

3

Hy

(g)

-2 0 2

x

-1

-0.5

0

0.5

1

1.5

2

Ez

(h)

Figure 13. Scattering of a plane wave by a multilayer disk: the 1-D x-wise appearance of the
real part of DGTD and NIMOR solutions of Hy (left) and Ez (right) along y = 0 of the four
testing parameters µ1 (1st row), µ2 (2nd row) , µ3 (3rd row), and µ4 (4th row).
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Scattering of a plane wave by a multilayer disk: the 2-D distribution of the real
part of Hx (1st row), Hy (2nd row) and Ez (3rd row) between NIMOR (left) and DGTD (right)
of µ2 = {5.425, 3.625, 2.425, 1.625}.

The computing time of the offline stage and the comparison between the online stage and the DGTD
method are shown in Tables 6 and 7.

Table 6. Scattering of a plane wave by a multilayer disk: the computing time of the offline
stage. The unit of time cost is second.

offline stage
(HF solutions Nested POD HODMD training ALS-based CPD GPR training)
6.184 × 104 7.696 × 101 8.244 × 101 1.812 1.481 × 101
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Table 7. Scattering of a plane wave by a multilayer disk: comparison of the computing time
between online stage and DGTD. The unit of time cost is second.

online stage
(one run for new parameters) DGTD
3.942 × 10−1 4.514 × 102

6. Conclusion

This work introduces a data-driven surrogate modeling approach that integrates the two-step POD,
HODMD, and CPD methods for parameterized time-domain Maxwell’s equations. During the offline
stage, a set of RB functions are derived by the two-step POD method from HF solutions or snapshots.
The HODMD method is then applied to predict the projection coefficients. The corresponding
predicted coefficients are organized into a three-dimensional tensor, which is decomposed into time-
and parameter-dependent components by the CPD method. Finally, the GPR method is used to
approximate the relationship between the time/parameter values and the above components. During
the online stage, the approximate solutions at some new time and parameter values can be quickly
estimated. The accuracy and effectiveness of the NIMOR method are illustrated numerically, focusing
on the scattering of a plane wave by a dielectric disk and by a multilayer heterogeneous medium. In
the near future, more complex 3-D realistic applications, more generalization ability [37], and more
precise parameter interpolation [38] may be considered.
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23. M. Korda, I. Mezić, Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control, Automatica, 93 (2018), 149–160.
https://doi.org/10.1016/j.automatica.2018.03.046

24. H. Zhang, C. W. Rowley, E. A. Deem, L. N. Cattafesta, Online dynamic mode
decomposition for time-varying systems, SIAM J. Appl. Dyn. Syst., 18 (2019), 1586–1609.
https://doi.org/10.1137/18M1192329

25. J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl.
Dyn. Syst., 15 (2016), 142–161. https://doi.org/10.1137/15M1013857

26. M. S. Hemati, C. W. Rowley, E. A. Deem, L. N. Cattafesta, De-biasing the dynamic mode
decomposition for applied Koopman spectral analysis of noisy datasets, Theor. Comp. Fluid. Dyn.,
31 (2017), 349–368. https://doi.org/10.1007/s00162-017-0432-2

27. S. Le Clainche, J. M. Vega, Higher order dynamic mode decomposition, SIAM J. Appl. Dyn. Syst.,
16 (2017), 882–925. https://doi.org/10.1137/15M1054924

28. J. Duan, J. S. Hesthaven, Non-intrusive data-driven reduced-order modeling for
time-dependent parametrized problems, J. Comput. Phys., 497 (2024), 112621.
https://doi.org/10.1016/j.jcp.2023.112621

29. L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence and stability of a
discontinuous Galerkin time-domain method for the 3-D heterogeneous Maxwell equations
on unstructured meshes, ESAIM Math. Model. Numer. Anal., 39 (2005), 1149–1176.
https://doi.org/10.1051/m2an:2005049

30. K. Li, T. Z. Huang, L. Li, S. Lanteri, L. Xu, B. Li, A reduced-order discontinuous Galerkin method
based on POD for electromagnetic simulation, IEEE T. Antenn. Propag., 66 (2018), 242–254.
https://doi.org/10.1109/TAP.2017.2768562

Networks and Heterogeneous Media Volume 19, Issue 3, 1309–1335.

http://dx.doi.org/https://doi.org/10.1007/s00211-016-0802-5
http://dx.doi.org/https://doi.org/10.1051/m2an/2016056
http://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0018
http://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0018
http://dx.doi.org/https://doi.org/10.1109/JMMCT.2023.3301978
http://dx.doi.org/https://doi.org/10.1017/S0022112010001217
http://dx.doi.org/https://doi.org/10.1088/2632-2153/abf0f5
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.03.046
http://dx.doi.org/https://doi.org/10.1137/18M1192329
http://dx.doi.org/https://doi.org/10.1137/15M1013857
http://dx.doi.org/https://doi.org/10.1007/s00162-017-0432-2
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2023.112621
http://dx.doi.org/https://doi.org/10.1051/m2an:2005049
http://dx.doi.org/https://doi.org/10.1109/TAP.2017.2768562


1335

31. S. L. Brunton, J. N. Kutz, Data-driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control, Cambridge: Cambridge University Press, 2022.
https://doi.org/10.1017/9781009089517

32. C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika,
1 (1936), 211–218. https://doi.org/10.1007/BF02288367

33. T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455–
500. https://doi.org/10.1137/07070111X

34. C. K. I. Williams, C. E. Rasmussen, Gaussian processes for regression, in Proceedings of the 8th
International Conference on Neural Information Processing Systems, NIPS’95, Cambridge: MIT
Press, 1995, 514–520. https://dl.acm.org/doi/10.5555/2998828.2998901

35. A. Banerjee, D. B. Dunson, S. T. Tokdar, Efficient Gaussian process regression for large datasets,
Biometrika, 100 (2013), 75–89. https://doi.org/10.1093/biomet/ass068

36. S. L. Lohr, Sampling: Design and Analysis, New York: Chapman and Hall/CRC, 2021.
https://doi.org/10.1201/9780429296284

37. N. Song, C. Wang, H. Peng, J. Zhao, A study of mechanism-data hybrid-driven method for
multibody system via physics-informed neural network, Acta Mech. Sin., 41 (2025), 524159.
https://doi.org/10.1007/s10409-024-24159-x

38. N. Song, H. Peng, Z. Kan, A hybrid data-driven model order reduction strategy for flexible
multibody systems considering impact and friction, Mech. Mach. Theory., 169 (2022), 104649.
https://doi.org/10.1016/j.mechmachtheory.2021.104649

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 19, Issue 3, 1309–1335.

http://dx.doi.org/https://doi.org/10.1017/9781009089517
http://dx.doi.org/https://doi.org/10.1007/BF02288367
http://dx.doi.org/https://doi.org/10.1137/07070111X
http://dx.doi.org/https://dl.acm.org/doi/10.5555/2998828.2998901
http://dx.doi.org/https://doi.org/10.1093/biomet/ass068
http://dx.doi.org/https://doi.org/10.1201/9780429296284
http://dx.doi.org/https://doi.org/10.1007/s10409-024-24159-x
http://dx.doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104649
http://creativecommons.org/licenses/by/4.0

	Introduction
	Full-order model
	An overview of POD-HODMD-CPD method
	Non-intrusive reduced-order modeling
	Two-step POD method
	HODMD method
	Approximation of the reduced-order matrices

	Numerical results
	Scattering of a plane wave by a dielectric disk
	Scattering of a plane wave by a multilayer disk

	Conclusion

