In this paper, we discuss sufficient conditions for the existence of solutions for a class of Initial value problem for an neutral differential equation involving Caputo fractional derivatives. Also, we discuss some types of Ulam stability for this class of implicit fractional-order differential equation. Some applications and particular cases are presented. Finally, the existence of at least one mild solution for this class of implicit fractional-order differential equation on an infinite interval by applying Schauder fixed point theorem and the local attractivity of solutions are proved.
Citation: H. H. G. Hashem, Hessah O. Alrashidi. Qualitative analysis of nonlinear implicit neutral differential equation of fractional order[J]. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
In this paper, we discuss sufficient conditions for the existence of solutions for a class of Initial value problem for an neutral differential equation involving Caputo fractional derivatives. Also, we discuss some types of Ulam stability for this class of implicit fractional-order differential equation. Some applications and particular cases are presented. Finally, the existence of at least one mild solution for this class of implicit fractional-order differential equation on an infinite interval by applying Schauder fixed point theorem and the local attractivity of solutions are proved.
[1] | S. Abbas, M. Benchohra, On the generalized Ulam-Hyers-Rassias stability for Darboux problem for partial fractional implicit differential equations, Appl. Math. E-Notes, 14 (2014), 20-28. |
[2] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, New York: Springer-Verlag, 2012. |
[3] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, New York: Nova Science Publishers, 2015. |
[4] | R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equ., 2009 (2009), 1-47. |
[5] | R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033. doi: 10.1007/s10440-008-9356-6 |
[6] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, New York: World Scientific Publishing, 2012. |
[7] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, New York: Springer, 2010. |
[8] | J. Banaś, D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573-582. doi: 10.1016/j.jmaa.2008.04.050 |
[9] | J. Banaś, B. Rzepka, On local attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation, Appl. Math. Comput., 213 (2009), 102-111. |
[10] | J. Banaś, K. Balachandran, D. Julie, Existence and global attractivity of solutions of a nonlinear functional integral equation, Appl. Math. Comput., 216 (2010), 261-268. |
[11] | A. Baliki, M. Benchohra, J. R. Graef, Global existence and stability for second order functional evolution equations with infinite delay, Electron. J. Qual. Theory Differ. Equat., 2016 (2016), 1-10. |
[12] | M. Benchohra, J. E. Lazreg, Nonlinear fractional implicit differential equations, Commun. Appl. Anal., 17 (2013), 471-482. |
[13] | M. Benchohra, J. E. Lazreg, On stability for nonlinear implicit fractional differential equations, Le Matematiche, LXX (2015), 49-61. |
[14] | M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62 (2017), 27-38. doi: 10.24193/subbmath.2017.0003 |
[15] | M. Benchohra, S. Litimein, J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), 1-16. doi: 10.1007/s11784-018-0638-y |
[16] | L. Byszewski, Theorem about existence and uniqueness of continuous solutions of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal., 40 (1991), 173-180. doi: 10.1080/00036819108840001 |
[17] | Y. J. Cho, Th. M. Rassias, R. Saadati, Stability of functional equations in random normed spaces, New York: Springer, 2013. |
[18] | P. Gavruta, A generalisation of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211 |
[19] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[20] | S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137. doi: 10.1006/jmaa.1998.5916 |
[21] | S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 19 (2006), 854-858. doi: 10.1016/j.aml.2005.11.004 |
[22] | S. M. Jung, K. S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coeficients, Math. Inequal. Appl., 10 (2007), 261-266. |
[23] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differenatial equations, Amsterdam: Elsevier Science B.V., 2006. |
[24] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13 (1993), 259-270. |
[25] | M. D. Otigueira, Fractional calculus for scientists and engineers, Dordrecht: Springer, 2011. |
[26] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[27] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[28] | J. M. Rassias, Functional equations, New York: Nova Science Publishers, Inc., 2010. |
[29] | Th. M. Rassias, J. Brzdek, Functional equations in mathematical analysis, New York: Springer, 2012. |
[30] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103-107. |
[31] | S. M. Ulam, Problems in modern mathematics, New York: John Wiley and sons, 1940. |
[32] | S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960. |
[33] | V. Usha, D. Baleanu, M. M. Arjunan, Existence results for an impulsive neutral integro-differential equations in Banach spaces, An. Şt. Univ. Ovidius Constanţa, 27 (2019), 231-257. |
[34] | J. V. da C. Sousa, M. Benchohra, G. M. N'Guérékata, Attractivity for differential equations of fractional order and $\psi$-Hilfer type, Fract. Calc. Appl. Anal., 23 (2020), 1188-1207. doi: 10.1515/fca-2020-0060 |
[35] | J. Wang, M. Feckan, Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J. Math. Anal. Appl., 395 (2012), 258-264. doi: 10.1016/j.jmaa.2012.05.040 |
[36] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equat., 63 (2011), 1-10. |
[37] | J. Wang, Y. Zhang, Existence and stability of solutions to nonlinear impulsive differential equations in L-normed spaces, Electron. J. Differ. Eq., 2014 (2014), 1-10. |