Research article Special Issues

Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method

  • Received: 05 September 2021 Accepted: 31 October 2021 Published: 15 November 2021
  • MSC : 34A08, 34D20, 34K37, 47H10

  • In this research work, we consider a class of nonlinear fractional integro-differential equations containing Caputo fractional derivative and integral derivative. We discuss the stabilities of Ulam-Hyers, Ulam-Hyers-Rassias, semi-Ulam-Hyers-Rassias for the nonlinear fractional integro-differential equations in terms of weighted space method and Banach fixed-point theorem. After the demonstration of our results, an example is given to illustrate the results we obtained.

    Citation: Qun Dai, Shidong Liu. Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method[J]. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140

    Related Papers:

  • In this research work, we consider a class of nonlinear fractional integro-differential equations containing Caputo fractional derivative and integral derivative. We discuss the stabilities of Ulam-Hyers, Ulam-Hyers-Rassias, semi-Ulam-Hyers-Rassias for the nonlinear fractional integro-differential equations in terms of weighted space method and Banach fixed-point theorem. After the demonstration of our results, an example is given to illustrate the results we obtained.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier Science, 2006.
    [2] F. Mainardi, Fractional calculus: Theory and applications, Basel: Mathematics, 2018. doi: 10.3390/books978-3-03897-207-5.
    [3] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. doi: 10.1016/j.chaos.2020.109705. doi: 10.1016/j.chaos.2020.109705
    [4] S. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Differ. Equ., 2020 (2020), 589. doi: 10.1186/s13662-020-03044-7. doi: 10.1186/s13662-020-03044-7
    [5] R. Herrmann, Fractional calculus: An introduction for physicists, Hackensack: World Sciebtific, 2011. doi: 10.1063/PT.3.1443.
    [6] E. Sokhanvar, A. A. Hemmat, Numerical solution of a fractional model for HIV infection of $CD4^+T$ cells via Legendre multiwavelet functions, Int. J. Bioautomation, 24 (2020), 359–370. doi: 10.7546/ijba.2020.24.4.000634. doi: 10.7546/ijba.2020.24.4.000634
    [7] M. Ghasemi, M. T. Kajani, E. Babolian, Numerical solutions of the nonlinear integro-differential equations: Wavele-Galerkin method and homotopy perturbation method, Appl. Math. Comput., 188 (2007), 450–455. doi: 10.1016/j.amc.2006.10.001. doi: 10.1016/j.amc.2006.10.001
    [8] M. T. Kajani, A. H. Vencheh, Solving linear integro-differential equation with Legendre wavelets, Int. J. Comput. Math., 81 (2004), 719–726. doi: 10.1080/00207160310001650044. doi: 10.1080/00207160310001650044
    [9] A. Kilicman, I. Hashim, M. T. Kajani, M. Maleki, On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257 (2014), 79–85. doi: 10.1016/j.cam.2013.07.050. doi: 10.1016/j.cam.2013.07.050
    [10] M. Maleki, M. T. Kajani, Numerical approximations for Volterras population growth model with fractional order via a multi-domain pseudospectral method, Appl. Math. Model., 39 (2015), 4300–4308. doi: 10.1016/j.apm.2014.12.045. doi: 10.1016/j.apm.2014.12.045
    [11] Q. Dai, C. J. Wang, R. M. Gao, Z. Li, Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition, Adv. Differ. Equ., 2017 (2017), 130. doi: 10.1186/s13662-017-1180-8. doi: 10.1186/s13662-017-1180-8
    [12] E. Abuteen, A. Freihat, M. Al-Smadi, H. Khalil, R. A. Khan, Approximate series solution of nonlinear fractional Klein-Gordon equations using fractional reduced differential transform method, J. Math. Stat., 12 (2016), 23–33. doi: 10.3844/jmssp.2016.23.33. doi: 10.3844/jmssp.2016.23.33
    [13] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517–2525. doi: 10.1016/j.asej.2017.04.006. doi: 10.1016/j.asej.2017.04.006
    [14] A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith, S. Momani, Construction of fractional power series solutions to fractional stiff system using residual functions algorithm, Adv. Differ. Equ., 2019 (2019), 45. doi: 10.1186/s13662-019-2042-3. doi: 10.1186/s13662-019-2042-3
    [15] A. Khan, K. Shah, Y. Li, Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations, J. Funct. Spaces, 2017 (2017), 3046013. doi: 10.1155/2017/3046013. doi: 10.1155/2017/3046013
    [16] Q. Dai, R. M. Gao, Z. Li, C. J. Wang, Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations, Adv. Differ. Equ., 2020 (2020), 103. doi: 10.1186/s13662-020-02558-4. doi: 10.1186/s13662-020-02558-4
    [17] S. Sevgin, H. Sevli, Stability of a nonlinear Volterra integro-differential equation via a fixed point approach, J. Nonlinear Sci. Appl., 9 (2016), 200–207. doi: 10.22436/jnsa.009.01.18. doi: 10.22436/jnsa.009.01.18
    [18] D. Chalishajar, A. Kumar, Existence, uniqueness and Ulam's stability of solutions for a coupled system of fractional differential equations with integral boundary conditions, Mathematics, 6 (2018), 96. doi: 10.3390/math6060096. doi: 10.3390/math6060096
    [19] J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [20] J. V. da C. Sousa, E. C. de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci., 77 (2019), 305–311. doi: 10.1016/j.cnsns.2019.05.003. doi: 10.1016/j.cnsns.2019.05.003
    [21] J. V. da C. Sousa, K. D. Kucche, E. C. de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. doi: 10.1016/j.aml.2018.08.013. doi: 10.1016/j.aml.2018.08.013
    [22] J. V. da C. Sousa, E. C. de Oliveira, Stability of the fractional Volterra integro-differential equation by means of $\psi$-hilfer operator, Math, Method. Appl. Sci., 42 (2019), 3033–3043. doi: 10.1002/mma.5563. doi: 10.1002/mma.5563
    [23] T. A. M. Langlands, B. I. Henry, S. L. Wearnea, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761. doi: 10.1007/s00285-009-0251-1. doi: 10.1007/s00285-009-0251-1
    [24] J. V. da C. Sousa, E. C. de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. doi: 10.1016/j.aml.2018.01.016. doi: 10.1016/j.aml.2018.01.016
    [25] H. Vu, N. V. Hoa, Ulam-Hyers stability for a nonlinear Volterra integro-differential equation, Hacet. J. Math. Stat., 49 (2020), 1261–1269. doi: 10.15672/hujms.483606. doi: 10.15672/hujms.483606
    [26] E. C. de Oliveira, J. V. da C.Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. doi: 10.1007/s00025-018-0872-z. doi: 10.1007/s00025-018-0872-z
    [27] Y. G. Zhao, On the existence for a class of periodic boundary value problems of nonlinear fractional hybrid differential equations, Appl. Math. Lett., 121 (2021), 107368. doi: 10.1016/j.aml.2021.107368. doi: 10.1016/j.aml.2021.107368
    [28] S. S. Zhou, S. Rashid, A. Rauf, K. T. Kubra, A. M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, AIMS Mathematics, 6 (2021), 12114–12132. doi: 10.3934/math.2021703. doi: 10.3934/math.2021703
    [29] M. M. Bekkouche, H. Guebbai, M. Kurulay, On the solvability fractional of a boundary value problem with new fractional integral, J. Appl. Math. Comput., 64 (2020), 551–564. doi: 10.1007/s12190-020-01368-x. doi: 10.1007/s12190-020-01368-x
    [30] M. Slodicka, K. Siskova, K. V. Bockstal, Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation, Appl. Math. Lett., 91 (2019), 15–21. doi: 10.1016/j.aml.2018.11.012. doi: 10.1016/j.aml.2018.11.012
    [31] T. T. Ma, Y. Tian, Boundary value problem for linear and nonlinear fractional differential equations, Appl. Math. Lett., 86 (2018), 1–7. doi: 10.1016/j.aml.2018.06.010. doi: 10.1016/j.aml.2018.06.010
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2150) PDF downloads(137) Cited by(2)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog