In the present article, we consider the stochastic inventory model aiming at selecting a subset of best policies with minimum total cost. When the computational budget is limited, then the optimal computing budget allocation (OCBA) is used for allocating the available computational budget to the different policies in order to correctly select the best policies. To measure the quality of the selection, we use the expected opportunity cost (EOC) approach that measures the total difference means between the actual best policies and the selected policies. The proposed algorithm OCBA based on EOC is implemented on a stochastic inventory example. The results show that the EOC approaches zero as the total number of computational budgets increases and that using the EOC measure gives better results than using the probability of correct selection (PCS). Moreover, the numerical results indicate that the proposed algorithm is robust.
Citation: Mohammad H. Almomani, Mahmoud H. Alrefaei. Selecting a set of best stochastic inventory policies measured by opportunity cost[J]. AIMS Mathematics, 2023, 8(2): 4892-4906. doi: 10.3934/math.2023244
In the present article, we consider the stochastic inventory model aiming at selecting a subset of best policies with minimum total cost. When the computational budget is limited, then the optimal computing budget allocation (OCBA) is used for allocating the available computational budget to the different policies in order to correctly select the best policies. To measure the quality of the selection, we use the expected opportunity cost (EOC) approach that measures the total difference means between the actual best policies and the selected policies. The proposed algorithm OCBA based on EOC is implemented on a stochastic inventory example. The results show that the EOC approaches zero as the total number of computational budgets increases and that using the EOC measure gives better results than using the probability of correct selection (PCS). Moreover, the numerical results indicate that the proposed algorithm is robust.
[1] | C. H. Chen, D. He, M. Fu, L. H. Lee, Efficient selection of an optimal subset for optimization under uncertainty, P. 2007 INFORMS Simu. Soc. Res. Workshop, 2007, 1–5. |
[2] | C. H. Chen, D. He, M. Fu, L. H. Lee, Efficient simulation budget allocation for selecting an optimal subset, Informs. J. Comput., 20 (2008), 579–595. https://doi.org/10.1287/ijoc.1080.0268 doi: 10.1287/ijoc.1080.0268 |
[3] | S. H. Kim, B. L. Nelson, Selecting the best system, Handbooks Oper. Res. Manage. Sci., 13 (2006), 501–534. https://doi.org/10.1016/S0927-0507(06)13017-0 doi: 10.1016/S0927-0507(06)13017-0 |
[4] | S. E. Chick, K. Inoue, New procedures for identifying the best simulated system using common random numbers, Manage. Sci., 47 (2001), 1133–1149. https://doi.org/10.1287/mnsc.47.8.1133.10229 doi: 10.1287/mnsc.47.8.1133.10229 |
[5] | S. E. Chick, K. Inoue, New two-stage and sequential procedures for selecting the best simulated system, Oper. Res., 49 (2001), 732–743. https://doi.org/10.1287/opre.49.5.732.10615 doi: 10.1287/opre.49.5.732.10615 |
[6] | S. E. Chick, Y. Wu, Selection procedures with frequentist expected opportunity cost bounds, Oper. Res., 53 (2005), 867–878. https://doi.org/10.1287/opre.1040.0187 doi: 10.1287/opre.1040.0187 |
[7] | S. Gao, W. Chen, Efficient subset selection for the expected opportunity cost, Automatica, 59 (2015), 19–26. https://doi.org/10.1016/j.automatica.2015.06.005 doi: 10.1016/j.automatica.2015.06.005 |
[8] | S. Gao, W. Chen, L. Shi, A new budget allocation framework for the expected opportunity cost, Op. Res., 65 (2017), 787–803. https://doi.org/10.1287/opre.2016.1581 doi: 10.1287/opre.2016.1581 |
[9] | F. Gao, Z. Shi, S. Gao, H. Xiao, Efficient simulation budget allocation for subset selection using regression metamodels, Automatica, 106 (2019), 192–200. https://doi.org/10.1016/j.automatica.2019.05.022 doi: 10.1016/j.automatica.2019.05.022 |
[10] | M. H. Almomani, M. H. Alrefaei, S. Al Mansour, A combined statistical selection procedure measured by expected opportunity cost, Arab. J. Sci. Eng., 43 (2018), 3163–3171. https://doi.org/10.1007/s13369-017-2865-8 doi: 10.1007/s13369-017-2865-8 |
[11] | M. H. Almomani, M. H. Alrefaei, S. Al Mansour, A method for selecting the best performance systems, Int. J. Pure Appl. Math., 120 (2018), 191–202. http://10.12732/ijpam.v120i2.3 doi: 10.12732/ijpam.v120i2.3 |
[12] | M. H. Almomani, M. H. Alrefaei, Ordinal optimization with optimal computing budget for selecting an optimal subset, Asia Pac. J. Oper. Res., 33 (2016), 1–17. https://doi.org/10.1142/S0217595916500093 doi: 10.1142/S0217595916500093 |
[13] | M. Al Salem, M. H. Almomani, M. H. Alrefaei, A. Diabat, On the optimal computing budget allocation problem for large scale simulation optimization, Simul. Model. Pract. Th., 71 (2017), 149–159. https://doi.org/10.1016/j.simpat.2016.05.004 doi: 10.1016/j.simpat.2016.05.004 |
[14] | M. H. Almomani, M. H. Alrefaei, Stopping rules for selecting the optimal subset, Nonlinear Dyn. Syst. Theory, 21 (2021), 13–26. http://e-ndst.kiev.ua13 |
[15] | M. H. Alrefaei, M. H. Almomani, S. N. Alabed Alhadi, Asymptotic approximation of the probability of correctly selecting the best systems, AIP Conf. P., 1991 (2018), 020022. https://doi.org/10.1063/1.5047895 doi: 10.1063/1.5047895 |
[16] | J. Xu, E. Huang, C. H. Chen, L. H. Lee, Simulation optimization: a review and exploration in the new era of cloud computing and big data, Asia Pac. J. Oper. Res., 32 (2015), 1550019. https://doi:10.1142/S0217595915500190 doi: 10.1142/S0217595915500190 |
[17] | Slide Player, Inventory models (Ⅱ) under SC environment, 2022. Available from: https://slideplayer.com/slide/12877200/. |
[18] | C. H. Chen, E. Yücesan, S. E. Chick, Simulation budget allocation for further enhancing the efficiency of ordinal optimization, Discrete Event. Dyn. S., 10 (2000), 251–270. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1 |
[19] | C. H. Chen, A lower bound for the correct subset–selection probability and its application to discrete event system simulations, IEEE T. Automat Contr., 41 (1996), 1227–1231. http://dx.doi.org/10.1109/9.533692 doi: 10.1109/9.533692 |
[20] | J. Banks, Handbook of simulation, Hoboken: John Wiley, 1998. |
[21] | G. Pedrielli, K. S. Candan, X. Chen, L. Mathesen, A. Inanalouganji, J. Xu, et al., Generalized ordinal learning framework (GOLF) for decision making with future simulated data, Asia Pac. J. Oper. Res., 36 (2019), 1940011. https://doi.org/10.1142/S0217595919400116 doi: 10.1142/S0217595919400116 |
[22] | T. Goodwin, J. Xu, N. Celik, C. H. Chen, Real-time digital twin-based optimization with predictive simulation learning, J. Simul., 2022, 1–18. https://doi:10.1080/17477778.2022.2046520 doi: 10.1080/17477778.2022.2046520 |
[23] | M. H. Alrefaei, M. H. Almomani, S. N. Alabed Alhadi, Selecting the best stochastic systems for large scale engineering problems, Int. J. Electr. Comput. Eng., 11 (2021), 4289–4299. http://doi.org/10.11591/ijece.v11i5.pp4289-4299 doi: 10.11591/ijece.v11i5.pp4289-4299 |
[24] | C. H. Chen, L. H. Lee, Stochastic simulation optimization: an optimal computing budget allocation, Singapore: World Scientific Publishing Company, 2011. |
[25] | Z. Lin, A. Matta, S. Du, A budget allocation strategy minimizing the sample set quantile for initial experimental design, IISE Trans., 53 (2021), 39–57. https://doi.org/10.1080/24725854.2020.1748771 doi: 10.1080/24725854.2020.1748771 |
[26] | Y. Fu, H. Xiao, L. H. Lee, M. Huang, Stochastic optimization using grey wolf optimization with optimal computing budget allocation, Appl. Soft Comput., 103 (2021), 107154. https://doi.org/10.1016/j.asoc.2021.107154 doi: 10.1016/j.asoc.2021.107154 |
[27] | C. Zhou, J. Xu, E. Miller-Hooks, W. Zhou, C. H. Chen, L. H. Lee, et al., Analytics with digital-twinning: a decision support system for maintaining a resilient port, Decis. Support Syst., 143 (2021), 113496. https://doi.org/10.1016/j.dss.2021.113496 doi: 10.1016/j.dss.2021.113496 |
[28] | D. He, S. E. Chick, C. H. Chen, Opportunity cost and OCBA selection procedures in ordinal optimization for a fixed number of alternative systems, IEEE Trans. Syst., 37 (2007), 951–961. http://dx.doi.org/10.1109/TSMCC.2007.900656 doi: 10.1109/TSMCC.2007.900656 |
[29] | S. S. Gupta, K. J. Miescke, Bayesian look ahead one-stage sampling allocations for selecting the best population, J. Stat. Plan. Inference, 54 (1996), 229–244. https://doi.org/10.1016/0378-3758(95)00169-7 doi: 10.1016/0378-3758(95)00169-7 |
[30] | H. Xiao, F. Gao, L. H. Lee, Optimal computing budget allocation for complete ranking with input uncertainty, IISE Trans., 52 (2020), 489–499. https://doi.org/10.1080/24725854.2019.1659524 doi: 10.1080/24725854.2019.1659524 |