In this paper, the pricing of European options under a new two-factor non-affine stochastic volatility model is studied. In order to reduce the computational complexity, we use the Taylor expansion and Fourier-cosine method to derive an analytical approximation formula for European option prices. Numerical experiments prove that the proposed formula is fast and efficient for pricing European options compared with Monte Carlo simulations. The sensitivity of the parameters is analyzed to explain the rationality of the model. Finally, we present some preliminary empirical analysis revealing that the pricing performance of our proposed model is superior to that of the single-factor model.
Citation: Shou-de Huang, Xin-Jiang He. Analytical approximation of European option prices under a new two-factor non-affine stochastic volatility model[J]. AIMS Mathematics, 2023, 8(2): 4875-4891. doi: 10.3934/math.2023243
In this paper, the pricing of European options under a new two-factor non-affine stochastic volatility model is studied. In order to reduce the computational complexity, we use the Taylor expansion and Fourier-cosine method to derive an analytical approximation formula for European option prices. Numerical experiments prove that the proposed formula is fast and efficient for pricing European options compared with Monte Carlo simulations. The sensitivity of the parameters is analyzed to explain the rationality of the model. Finally, we present some preliminary empirical analysis revealing that the pricing performance of our proposed model is superior to that of the single-factor model.
[1] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1142/9789814759588_0001 doi: 10.1142/9789814759588_0001 |
[2] | R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143 |
[3] | J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x |
[4] | G. Bakshi, C. Cao, Z. Chen, Empirical performance of alternative option pricing models, J. Finance, 52 (1997), 2003–2049. https://doi.org/10.1111/j.1540-6261.1997.tb02749.x doi: 10.1111/j.1540-6261.1997.tb02749.x |
[5] | E. M. Stein, J. C. Stein, Stock price distributions with stochastic volatility: an analytic approach, Rev. Financ. Stud., 4 (1991), 727–752. https://doi.org/10.1093/rfs/4.4.727 doi: 10.1093/rfs/4.4.727 |
[6] | S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327 |
[7] | P. Christoffersen, S. Heston, K. Jacobs, The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well, Manage. Sci., 55 (2009), 1914–1932. https://doi.org/10.1287/mnsc.1090.1065 doi: 10.1287/mnsc.1090.1065 |
[8] | X. J. He, W. Chen, Pricing foreign exchange options under a hybrid Heston-Cox-Ingersoll-Ross model with regime switching, IMA J. Manag. Math., 33 (2022), 255–272. https://doi.org/10.1093/imaman/dpab013 doi: 10.1093/imaman/dpab013 |
[9] | X. J. He, S. Lin, A new nonlinear stochastic volatility model with regime switching stochastic mean reversion and its applications to option pricing, Exp. Syst. Appl., 212 (2023), 118742. https://doi.org/10.1016/j.eswa.2022.118742 doi: 10.1016/j.eswa.2022.118742 |
[10] | X. J. He, S. Lin, A closed-form pricing formula for European options under a new three-factor stochastic volatility model with regime switching, Japan J. Indust. Appl. Math., 2022, 1–12. https://doi.org/10.1007/s13160-022-00538-7 doi: 10.1007/s13160-022-00538-7 |
[11] | P. Christoffersen, K. Jacobs, J. Mimouni, Volatility dynamics for the S & P500: evidence from realized volatility, daily returns, and option prices, Rev. Financ. Stud., 23 (2010), 3141–3189. https://doi.org/10.1093/rfs/hhq032 doi: 10.1093/rfs/hhq032 |
[12] | K. Chourdakis, G. Dotsis, Maximum likelihood estimation of non-affine volatility processes, J. Empir. Financ., 18 (2011), 533–545. https://doi.org/10.1016/j.jempfin.2010.10.006 doi: 10.1016/j.jempfin.2010.10.006 |
[13] | F. Fang, C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput., 31 (2008), 826–848. https://doi.org/10.1137/080718061 doi: 10.1137/080718061 |
[14] | F. Fang, C. W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. Math., 114 (2009), 27–62. https://doi.org/10.1007/s00211-009-0252-4 doi: 10.1007/s00211-009-0252-4 |
[15] | X. J. He, S. Lin, An analytical approximation formula for barrier option prices under the Heston model, Comput. Econ., 60 (2022), 1413–1425. https://doi.org/10.1007/s10614-021-10186-7 doi: 10.1007/s10614-021-10186-7 |
[16] | S. Huang, X. Guo, A Fourier-cosine method for pricing discretely monitored barrier options under stochastic volatility and double exponential Jump, Math. Probl. Eng., 2020 (2020), 1–9. https://doi.org/10.1155/2020/4613536 doi: 10.1155/2020/4613536 |
[17] | S. Zhang, J. Geng, Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps, Commun. Stat.-Theory Methods, 46 (2017), 9995–10004. https://doi.org/10.1080/03610926.2016.1228960 doi: 10.1080/03610926.2016.1228960 |
[18] | D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68 (2000), 1343–1376. https://doi.org/10.1111/1468-0262.00164 doi: 10.1111/1468-0262.00164 |
[19] | P. Pasricha, X. J. He, A simple European option pricing formula with a skew Brownian motion, Probab. Eng. Inform. Sci., 2022, 1–6. https://doi.org/10.1017/S0269964822000407 doi: 10.1017/S0269964822000407 |