In this paper, we investigate the property of core compactness of ordered topological spaces. Particularly, we give a series of characterizations of the core compactness for directed spaces. Several results obtained in this paper are closely related to a long-standing open problem in Open problems in Topology (J. van Mill, G. M. Reed Eds., North-Holland, 1990): Which distributive continuous lattice's spectrum is exactly a sober locally compact Scott space?
Citation: Yuxu Chen, Hui Kou. Core compactness of ordered topological spaces[J]. AIMS Mathematics, 2023, 8(2): 4862-4874. doi: 10.3934/math.2023242
In this paper, we investigate the property of core compactness of ordered topological spaces. Particularly, we give a series of characterizations of the core compactness for directed spaces. Several results obtained in this paper are closely related to a long-standing open problem in Open problems in Topology (J. van Mill, G. M. Reed Eds., North-Holland, 1990): Which distributive continuous lattice's spectrum is exactly a sober locally compact Scott space?
[1] | S. Abramsky, A. Jung, Domain theory. Handbook of logic in computer science, Oxford: Claendon Press, 1994. |
[2] | T. M. Al-Shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math-Uk., (2021), 6699092. http://dx.doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092 |
[3] | Y. Chen, H. Kou, Z. C. Lyu, Two topologies on the lattice of Scott closed subsets, Topol. Appl., 306 (2022), 107918. http://dx.doi.org/10.1016/J.TOPOL.2021.107918 doi: 10.1016/J.TOPOL.2021.107918 |
[4] | B. J. Day, G. M. Kelly, On topological quotient maps preserved by pullbacks or products, Math. Proc. Cambridge., 67 (1970), 553–558. http://dx.doi.org/10.1017/S0305004100045850 doi: 10.1017/S0305004100045850 |
[5] | M. Erné, Infinite distributive laws versus local connectedness and compactness properties, Topol. Appl., 156 (2009), 2054–2069. http://dx.doi.org/10.1016/j.topol.2009.03.029 doi: 10.1016/j.topol.2009.03.029 |
[6] | H. R. Feng, H. Kou, Quasicontinuity and meet-continuity of $T_{0}$ spaces (Chinese), J. Sichuan. Univ., 54 (2017), 905–910. http://dx.doi.org/10.3969/j.issn.0490-6756.2017.05.002 doi: 10.3969/j.issn.0490-6756.2017.05.002 |
[7] | G. Gierz, K. H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous Lattices and Domains. Cambridge: Cambridge university press, 2003. |
[8] | G. Gierz, J. Lawson, Generalized continuous and hypercontinuous lattices, Rocky. Mt. J. Math., 11 (1981), 271–296. http://dx.doi.org/10.1216/RMJ-1981-11-2-271 doi: 10.1216/RMJ-1981-11-2-271 |
[9] | J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Cambridge: Cambridge University Press, 2013. |
[10] | R. E. Hoffmann, Continuous posets, prime spectra of completely distributive lattices, and Hausdorff compactification, Continuous Lattices, Berlin-Heidelberg: Springer, 871 (1981), 159–208. http://dx.doi.org/10.1007/BFb0089907 |
[11] | M. Huth, A. Jung, K. Keimel, Linear types, approximation, and topology, Math. Struct. Comp. Sci., 10 (2000), 719–746. http://dx.doi.org/10.1017/s0960129500003200 doi: 10.1017/s0960129500003200 |
[12] | J. R. Isbell, Function spaces and adjoints, Math. Scand., 36 (1975), 317–339. http://dx.doi.org/10.7146/MATH.SCAND.A-11581 doi: 10.7146/MATH.SCAND.A-11581 |
[13] | P. Johnstone, Scott is not always sober, In: Continuous Lattices, In: Lecture Notes in Mathematics, Springer, 871 (1981), 282–283. http://dx.doi.org/10.1007/BFB0089911 |
[14] | C. J. Knight, W. Moran, J. S. Pym, The topologies of separate continuity, Math. Proc. Cambridge., 68 (1970), 663–671. http://dx.doi.org/10.1017/S0305004100076659 doi: 10.1017/S0305004100076659 |
[15] | J. Lawson, $T_{0}$-spaces and pointwise convergence, Topol. Appl., 21 (1985), 73–76. http://dx.doi.org/10.1016/0166-8641(85)90059-8 doi: 10.1016/0166-8641(85)90059-8 |
[16] | J. Lawson, The duality of continuous posets, Houston. J. Math., 5 (1979), 357–386. |
[17] | J. Lawson, G. H. Wu, X. Y. Xi, Well-filtered spaces, compactness, and the lower topology, Houston. J. Math., 46 (2020), 283–294. |
[18] | S. Z. Luo, X. Q. Xu, On Monotone Determined Spaces, Electron. Notes. Theor., 333 (2017), 63–72. http://dx.doi.org/10.1016/J.ENTCS.2017.08.006 doi: 10.1016/J.ENTCS.2017.08.006 |
[19] | Z. C. Lyu, Y. Chen, X. D. Jia, Core-compactness, consonance and the Smyth powerspaces, Topol. Appl., 312 (2022), 108066. http://dx.doi.org/10.1016/j.topol.2022.108066 doi: 10.1016/j.topol.2022.108066 |
[20] | H. L. Miao, Q. G. Li, D. S. Zhao, On two problems about sobriety of topological spaces, Topol. Appl., 295 (2021), 107667. http://dx.doi.org/10.1016/J.TOPOL.2021.107667 doi: 10.1016/J.TOPOL.2021.107667 |
[21] | J. V. Mill, G. M. Reed, Open Problems in Topology, Amsterdam: North-Holland, 1990. |
[22] | P. Venugopalan, Priestley spaces, P. Am. Math. Soc., 109 (1990), 605–610. https://doi.org/10.2307/2048197 doi: 10.2307/2048197 |
[23] | X. P. Wen, X. Q. Xu, Sober is not always co-sober, Topol. Appl., 250 (2018), 48–52. http://dx.doi.org/10.1016/J.TOPOL.2018.10.003 doi: 10.1016/J.TOPOL.2018.10.003 |
[24] | X. Y. Xi, J. Lawson, On well-filtered spaces and ordered sets, Topol. Appl., 228 (2017), 139–144. http://dx.doi.org/10.1016/J.TOPOL.2017.06.002 doi: 10.1016/J.TOPOL.2017.06.002 |
[25] | Y. Yu, H. Kou, Directed spaces defined by the specialization order of $T_0$ space (Chinese), J. Sichuan. Univ., 52 (2015), 217–222. http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001 doi: 10.3969/j.issn.0490-6756.2015.02.001 |
[26] | Z. X. Zhang, F. G. Shi, Q. G. Li, Continuity and Directed Completion of Topological Spaces, Order, (2021), 1–14. http://dx.doi.org/10.1007/s11083-021-09586-z doi: 10.1007/s11083-021-09586-z |