Research article

New stability criteria for semi-Markov jump linear systems with time-varying delays

  • Received: 05 December 2020 Accepted: 08 February 2021 Published: 22 February 2021
  • MSC : 93B52, 93C42

  • In this paper, the delay-dependent stochastic stability problem of semi-Markov jump linear systems (S-MJLS) with time-varying delays is investigated. By constructing a Lyapunov-Krasovskii functional (LKF) with two delay-product-type terms, a new sufficient condition on stochastic stability of S-MJLSs is derived in terms of linear matrix inequalities (LMIs). Furthermore, the combination use of a slack condition on Lyapunov matrix and the improved Wirtinger's integral inequality reduces the conservatism of the result. Numerical examples are provided to verify the effectiveness and superiority of the presented results.

    Citation: Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu. New stability criteria for semi-Markov jump linear systems with time-varying delays[J]. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263

    Related Papers:

  • In this paper, the delay-dependent stochastic stability problem of semi-Markov jump linear systems (S-MJLS) with time-varying delays is investigated. By constructing a Lyapunov-Krasovskii functional (LKF) with two delay-product-type terms, a new sufficient condition on stochastic stability of S-MJLSs is derived in terms of linear matrix inequalities (LMIs). Furthermore, the combination use of a slack condition on Lyapunov matrix and the improved Wirtinger's integral inequality reduces the conservatism of the result. Numerical examples are provided to verify the effectiveness and superiority of the presented results.



    加载中


    [1] X. R. Mao, C. R. Yuan, Stochastic differential equations with Markovian switching, Imperial college press, 2006
    [2] S. Yang, Y. Bo, Robust mixed $H_{2}/H_{\infty }$ control of networked control systems with random time delays in both forward and backward communication links, Automatica, 47 (2011), 754–760. doi: 10.1016/j.automatica.2011.01.022
    [3] S. Y. Xu, J. Lam, X. R. Mao, Delay-dependent $H_{\infty }$ control and filtering for uncertain Markovian jump systems with time-varying delays, IEEE T. Circuits-I, 54 (2007), 2070–2077. doi: 10.1109/TCSI.2007.904640
    [4] L. X. Zhang, E. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45 (2009), 463–468. doi: 10.1016/j.automatica.2008.08.010
    [5] Z. G. Wu, J. H. Park, H. S. Su, J. Chu, Delay-dependent passivity for singular Markov jump systems with time-delays, Commun. Nonlinear Sci., 18 (2013), 669–681. doi: 10.1016/j.cnsns.2012.08.017
    [6] J. Cheng, Y. N. Shan, J. D. Cao, J. H. Park, Nonstationary control for T-S fuzzy Markovian switching systems with variable quantization density, IEEE T. Fuzzy Syst., (2020), in press.
    [7] V. Barbu, N. Limnios, Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis, Business Media: Springer Science, 2008.
    [8] J. Huang, Y. Shi, Stochastic stability of semi-Markov jump linear systems: An LMI approach, IEEE conference on decision and control, (2011), 4668–4673.
    [9] Z. T. Hou, J. W. Luo, P. Shi, S. K. Nguang, Stochastic stability of ito differential equations with semi-Markovian jump parameters, IEEE T. Automat. Contr., 51 (2006), 1383–1387. doi: 10.1109/TAC.2006.878746
    [10] F. B. Li, L. G. Wu, P. Shi, Stochastic stability of semi-Markovian jump systems with mode-dependent delays, Int. J. Robust Nonlin., 24 (2014), 3317–3330. doi: 10.1002/rnc.3057
    [11] B. P. Jiang, Y. G. Kao, H. R. Karimi, C. C. Gao, Stability and stabilization for singular switching semi-markovian jump systems with generally uncertain transition rates, IEEE T. Automat. Contr., 63 (2018), 3919–3926. doi: 10.1109/TAC.2018.2819654
    [12] Y. L. Wei, J. H. Park, J. Qiu, L. G. Wu, H. Y. Jung, Sliding mode control for semi-Markovian jump systems via output feedback, Automatica, 81 (2017), 133–141. doi: 10.1016/j.automatica.2017.03.032
    [13] W. H. Qi, G. D. Zong, H. R. Karimi, Sliding mode control for nonlinear stochastic singular semi-Markov jump systems, IEEE T. Automat. Contr., 65 (2019), 361–368.
    [14] W. H. Qi, X. W. Gao, C. K. Ahn, J. D. Cao, J. Cheng, Fuzzy Integral Sliding-Mode Control for Nonlinear Semi-Markovian Switching Systems With Application, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2020), 1–10.
    [15] W. H. Qi, G. D. Zong, H. R. Karimi, SMC for nonlinear stochastic switching systems with quantization, IEEE T. Circuits-II, (2020), 1–1.
    [16] W. H. Qi, G. D. Zong, W. X. Zheng, Adaptive Event-Triggered SMC for Stochastic Switching Systems With Semi-Markov Process and Application to Boost Converter Circuit Model, IEEE T. Circuits-I, 68 (2021), 786–796.
    [17] B. P. Jiang, H. R. Karimi, Y. G., Kao, C. C. Gao, Adaptive control of nonlinear semi-Markovian jump T-S fuzzy systems with immeasurable premise variables via sliding mode observer, IEEE T. Cybernetics, 50 (2020), 810–820. doi: 10.1109/TCYB.2018.2874166
    [18] W. H. Qi, J. H. Park, G. D. Zong, J. D. Cao, J. Chen, Anti-windup design for saturated semi-Markovian switching systems with stochastic disturbance, IEEE T. Circuits-II, 66 (2019), 1187–1191.
    [19] L. X. Zhang, Y. Leng, P. Colaneri, Stability and stabilization of discrete-time semi-Markov jump linear systems via semi-Markov kernel approach, IEEE T. Automat. Contr., 61 (2016), 503–508.
    [20] L. X. Zhang, T. Yang, P. Colaneri, Stability and stabilization of semi-Markov jump linear systems with exponential modulated periodic distribution of sojourn time, IEEE T. Automat. Contr., 62 (2017), 2870–2885. doi: 10.1109/TAC.2016.2618844
    [21] H. Shen, F. Li, S. Y. Xu, V. Sreeram, Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations, IEEE T. Automat. Contr., 63 (2018), 2709–2714. doi: 10.1109/TAC.2017.2774006
    [22] J. Wang, Y. Wang, H. C. Yan, J. D. Cao, H. Shen, Hybrid Event-Based Leader-Following Consensus of Nonlinear Multiagent Systems With Semi-Markov Jump Parameters, IEEE Systems Journal, (2020), 1–12.
    [23] W. H. Qi, J. H. Park, G. D. Zong, J. D. Cao, Filter for Positive Stochastic Nonlinear Switching Systems With Phase-Type Semi-Markov Parameters and Application, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2021), 1–12.
    [24] Y. Liu, J. W. Xia, B. Meng, X. N. Song, H. Shen, Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme, J. Franklin I., 357 (2020), 10900–10920. doi: 10.1016/j.jfranklin.2020.08.023
    [25] J. Wang, J. W. Xia, H. Shen, M. P. Xing, J. H. Park, $H_{\infty}$ Synchronization for Fuzzy Markov Jump Chaotic Systems with Piecewise-Constant Transition Probabilities Subject to PDT Switching Rule, IEEE T. Fuzzy Syst., (2020), 1–1.
    [26] B. Y. Zhang, J. Lam, S. Y. Xu, Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals, IEEE T. Neur. Net. Lear., 26 (2015), 1480–1492. doi: 10.1109/TNNLS.2014.2347290
    [27] J. Li, Y. He, M. Wu, Improved delay-dependent stability analysis of discrete-time neural networks with time-varying delay, J. Franklin I., 354 (2017), 1922–1936. doi: 10.1016/j.jfranklin.2016.12.027
    [28] V. H. Le, H. Trinh, An enhanced stability criterion for time-delay systems via a new bounding technique, J. Franklin I., 352 (2015), 4407–4422. doi: 10.1016/j.jfranklin.2015.06.023
    [29] M. Wu, Y. He, J. H. She, G. P. Liu, Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40 (2004), 1435–1439. doi: 10.1016/j.automatica.2004.03.004
    [30] H. Y. Shao, New delay-dependent stability criteria for systems with interval delay, Automatica, 45 (2009), 744–749. doi: 10.1016/j.automatica.2008.09.010
    [31] J. Kim, Delay-dependent robust and non-fragile guaranteed cost control for uncertain singular systems with time-varying state and input delays, Int. J. Control Autom., 7 (2009), 357–364. doi: 10.1007/s12555-009-0304-7
    [32] M. Wu, Z. Feng, Y. He, Improved delay-dependent absolute stability of Lure systems with time-delay, Int. J. Control Autom., 7 (2009), 1009–1014. doi: 10.1007/s12555-009-0618-5
    [33] J. W. Wen, L. Peng, S. K. Nguang, Finite-time control for discrete-time Markovian jump systems with deterministic switching and time-delay, Int. J. Control Autom., 12 (2014), 473–485. doi: 10.1007/s12555-013-0397-x
    [34] F. O. Souza, Further improvement in stability criteria for linear systems with interval time-varying delay, IET Control Theory A., 7 (2013), 440–446. doi: 10.1049/iet-cta.2012.0379
    [35] P. L. Liu, New delay-derivative-dependent stability criteria for linear systems with interval time-varying delays, International Journal of Electrical Engineering, 24 (2017), 47–57.
    [36] Q. L. Han, A discrete delay decomposition approach to stability of linear retarded and neutral systems, Automatica, 45 (2009), 517–524. doi: 10.1016/j.automatica.2008.08.005
    [37] K. S. Ko, W. I. Lee, P. G. Park, D. K. Sung, Delays-dependent region partitioning approach for stability criterion of linear systems with multiple time-varying delays, Automatica, 87 (2018), 389–394. doi: 10.1016/j.automatica.2017.09.003
    [38] M. Tang, Y. Wang, C. Y. Wen, Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays, IET Control Theory A., 6 (2012), 868–873. doi: 10.1049/iet-cta.2011.0360
    [39] M. Fang, J. H. Park, A multiple integral approach to stability of neutral time-delay systems, Appl. Math. Comput., 224 (2013), 714–718.
    [40] X. L. Zhu, G. H. Yang, Jensen integral inequality approach to stability analysis of continuous-time systems with time-varying delay, IET Control Theory A., 2 (2008), 524–534. doi: 10.1049/iet-cta:20070298
    [41] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. doi: 10.1016/j.automatica.2013.05.030
    [42] M. Park, O. Kwon, J. H. Park, S. M. Lee, E. J. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, 55 (2015), 204–208. doi: 10.1016/j.automatica.2015.03.010
    [43] C. K. Zhang, Y. He, L. Jiang, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. doi: 10.1016/j.automatica.2017.07.056
    [44] P. G. Park, J. W. Ko, C. Jeong, Reciprocally convex approach tostability of systems with time-varying delays, Automatica, 47 (2011), 235–238. doi: 10.1016/j.automatica.2010.10.014
    [45] H. Zeng, Y. He, M. Wu, J. She, Free-Matrix-Based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Automat. Contr., 60 (2015), 2768–2772. doi: 10.1109/TAC.2015.2404271
    [46] Y. L. Zhi, Y. He, C. K. Zhang, M. Wu, New method for stability of systems with time-varying delay via improved free-matrix-based integral inequality, IFAC-PapersOnLine, 50 (2017), 1281–1285. doi: 10.1016/j.ifacol.2017.08.132
    [47] C. K. Zhang, Y. He, L. Jiang, M. Wu, H. B. Zeng, Stability analysis of systems with time-varying delay via relaxed integral inequalities, Syst. Control Lett., 92 (2016), 52–61. doi: 10.1016/j.sysconle.2016.03.002
    [48] D. X. Liao, S. M Zhong, J. N. Luo, X. J. Zhang, Y. B. Yu, Q. S. Zhong, Improved delay-dependent stability criteria for networked control system with two additive input delays, Int. J. Control Autom., 17 (2019), 2174–2182. doi: 10.1007/s12555-018-0481-3
    [49] Z. Li, Z. Fei, H. Gao, Stability and stabilisation of Markovian jump systems with time-varying delay: An input-output approach, IET Control Theory A., 6 (2012), 2601–2610. doi: 10.1049/iet-cta.2012.0458
    [50] Z. C. Li, Y. L. Xu, Z. Y. Fei, H. Huang, S. Misra, Stability analysis and stabilization of Markovian jump systems with time-varying delay and uncertain transition information, Int. J. Robust Nonlin., 28 (2018), 68–85. doi: 10.1002/rnc.3854
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2304) PDF downloads(263) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog