Research article

Bipolar soft functions

  • Received: 01 November 2020 Accepted: 28 January 2021 Published: 22 February 2021
  • MSC : 06D72, 03E20

  • In this paper, we introduce and study bipolar soft functions. Later, the inverse image of bipolar soft sets is developed and some of its properties are discussed. The relationships between bipolar soft image and inverse image of bipolar soft sets are investigated.

    Citation: Asmaa Fadel, Syahida Che Dzul-Kifli. Bipolar soft functions[J]. AIMS Mathematics, 2021, 6(5): 4428-4446. doi: 10.3934/math.2021262

    Related Papers:

  • In this paper, we introduce and study bipolar soft functions. Later, the inverse image of bipolar soft sets is developed and some of its properties are discussed. The relationships between bipolar soft image and inverse image of bipolar soft sets are investigated.



    加载中


    [1] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31.
    [2] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. doi: 10.1016/S0898-1221(03)00016-6
    [3] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. doi: 10.1016/j.camwa.2008.11.009
    [4] N. Çaǧman, S. Enginoǧlu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 (2010), 848–855. doi: 10.1016/j.ejor.2010.05.004
    [5] K. Hayat, M. I. Ali, B. Y. Cao, X. P. Yang, A new type-2 soft set: Type-2 soft graphs and their applications, Adv. Fuzzy Syst., 2017 (2017), 6162753.
    [6] K. Hayat, B. Y. Cao, M. I. Ali, F. Karaaslan, Z. Qin, Characterizations of certain types of type 2 soft graphs, Discrete Dyn. Nat. Soc., 2018 (2018), 8535703.
    [7] M. F. Aslam, M. I. Ali, T. Mahmood, M. M. U. Rehman, N. Sarfraz, Study of fuzzy soft sets with some order on set of parameters, Int. J. Algebra Stat., 8 (2019), 50–65.
    [8] K. Hayat, M. I. Ali, F. Karaaslan, B. Y. Cao, M. H. Shah, Design concept evaluation using soft sets based on acceptable and satisfactory levels: an integrated TOPSIS and Shannon entropy, Soft Comput., 24 (2020), 2229–2263. doi: 10.1007/s00500-019-04055-7
    [9] P. Majumdar, S. K. Samanta, On soft mappings, Comput. Math. Appl., 60 (2010), 2666–2672. doi: 10.1016/j.camwa.2010.09.004
    [10] A. Kharal, B. Ahmad, Mappings on soft classes, New Mathematics and Natural Computation, 7 (2011), 471–481. doi: 10.1142/S1793005711002025
    [11] I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185.
    [12] D. N. Georgiou, A. C. Megaritis, Soft set theory and topology, Appl. Gen. Topol., 15 (2014), 93–109. doi: 10.4995/agt.2014.2268
    [13] I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. doi: 10.12785/amis/090147
    [14] C. G. Aras, A. Sonmez, H. Çakallı, An approach to soft functions, J. Math. Anal., 8 (2017), 129–138.
    [15] A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. doi: 10.1007/s00521-011-0722-3
    [16] K. V. Babitha, J. J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840–1849. doi: 10.1016/j.camwa.2010.07.014
    [17] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory A., 2013 (2013), 1–11. doi: 10.1186/1687-1812-2013-1
    [18] M. Shabir, M. Naz, On bipolar soft sets, arXiv preprint arXiv: 1303.1344, 2013.
    [19] D. Dubois, H. Prade, An introduction to bipolar representations of information and preference, Int. J. Intell. Syst., 8 (2008), 866–877.
    [20] F. Karaaslan, S. Karataş, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 7 (2015), 1550054. doi: 10.1142/S1793830915500548
    [21] K. Hayat, T. Mahmood, Some applications of bipolar soft set: characterizations of two isomorphic hemi-rings via BSI-h-ideals, Journal of Advances in Mathematics and Computer Science, 13 (2015), 1–21.
    [22] F. Karaaslan, I. Ahmad, A. Ullah, Bipolar soft groups, J. Intell. Fuzzy Syst., 31 (2016), 651–662. doi: 10.3233/IFS-162178
    [23] M. Shabir, A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakari J. Sci. Technol., 39 (2017), 359–371.
    [24] T.Y. Öztürk, On bipolar soft topological spaces, J. New Theory, 20 (2018), 64–75.
    [25] A. Fadel, N. Hassan, Separation axioms of bipolar soft topological space, J. Phys. Conf. Ser., 1212 (2019), 012017. doi: 10.1088/1742-6596/1212/1/012017
    [26] A. Fadel, S. C. Dzul-Kifli, Bipolar soft topological spaces, European Journal of Pure and Applied Mathematics, 13 (2020), 227–245. doi: 10.29020/nybg.ejpam.v13i2.3645
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2157) PDF downloads(152) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog