Citation: Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations[J]. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
[1] | R. P. Agarwal, B. Ahmad, D. Garout, A. Alsaedi, Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions, Chaos Solitons Fractals, 102 (2017), 149-161. doi: 10.1016/j.chaos.2017.03.025 |
[2] | R. P. Agarwal, A. Alsaedi, N. Alghamdi, S. Ntouyas, B. Ahmad, Existence results for multiterm fractional differential equations with nonlocal multi-point and multi-strip boundary conditions, Adv. Differ. Equ., 2018 (2018), 1-23. doi: 10.1186/s13662-017-1452-3 |
[3] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. H. Aqlan, A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions, Mediterr. J. Math., 14 (2017), 1-15. doi: 10.1007/s00009-016-0833-2 |
[4] | B. Ahmad, S. Ntouyas, A fully hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348-360. |
[5] | A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 1-21. doi: 10.1186/s13662-018-1939-6 |
[6] | Z. Ali, A. Zada, K. Shah, Existence and stability analysis of three point boundary value problem, Int. J. Appl. Math. Comput. Sci., 3 (2017), 651-664. |
[7] | Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Control. Syst. Technol., 20 (2011), 763-769. |
[8] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1-8. doi: 10.1186/1687-1847-2012-1 |
[9] | C. Jiang, A. Zada, M. T. Senel, T. Li, Synchronization of bidirectional n-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure, Adv. Differ. Equ., 2019 (2019), 1-16. doi: 10.1186/s13662-018-1939-6 |
[10] | C. Jiang, F. Zhang, T. Li, Synchronization and antisynchronization of n-coupled fractional-order complex chaotic systems with ring connection, Math. Methods Appl. Sci., 41 (2018), 2625-2638. doi: 10.1002/mma.4765 |
[11] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006. |
[12] | J. Klafter, S. Lim, R. Metzler, Fractional dynamics: Recent advances, World Scientific, 2012. |
[13] | Z. Laadjal, Q. Ma, Existence and uniqueness of solutions for nonlinear volterra-fredholm integro-differential equation of fractional order with boundary conditions, Math. Methods Appl. Sci., 2019. DOI: 10.1002/mma.5845. |
[14] | Q. Ma, J. Wang, R. Wang, X. Ke, Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Lett., 36 (2014), 7-13. doi: 10.1016/j.aml.2014.04.009 |
[15] | Q. Ma, R.Wang, J.Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436-445. |
[16] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153. doi: 10.1016/j.cnsns.2010.05.027 |
[17] | S. Muthaiah, D. Baleanu, Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives, Axioms, 9 (2020), 1-17. doi: 10.30821/axiom.v9i1.7235 |
[18] | S. Muthaiah, M. Murugesan, N. G. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 162-173. |
[19] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[20] | K. Shah, A. Ali, S. Bushnaq, Hyers-ulam stability analysis to implicit cauchy problem of fractional differential equations with impulsive conditions, Math. Methods Appl. Sci., 41 (2018), 8329-8343. doi: 10.1002/mma.5292 |
[21] | D. R. Smart, Fixed point theorems, CUP Archive, 1980. |
[22] | M. Subramanian, D. Baleanu, Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdelyi-kober integral boundary conditions, Appl. Math. Inf. Sci., 14 (2020), 415-424. doi: 10.18576/amis/140307 |
[23] | M. Subramanian, A. Kumar, T. N. Gopal, Analysis of fractional boundary value problem with non-local integral strip boundary conditions, Nonlinear Stud., 26 (2019), 445-454. |
[24] | M. Subramanian, A. R. V. Kumar, T. N. Gopal, Analysis of fractional boundary value problem with non local flux multi-point conditions on a caputo fractional differential equation, Stud. Univ. Babes-Bolyai. Math., 64 (2019), 511-527. doi: 10.24193/subbmath.2019.4.06 |
[25] | M. Subramanian, A. V. Kumar, T. N. Gopal, Influence of coupled nonlocal slit-strip conditions involving Caputo derivative in fractional boundary value problem, Discontinuity, Nonlinearity Complexity, 8 (2019), 429-445. |
[26] | M. Subramanian, A. V. Kumar, T. N. Gopal, A strategic view on the consequences of classical integral sub-strips and coupled nonlocal multi-point boundary conditions on a combined Caputo fractional differential equation, Proc. Jangjeon Math. Soc., 22 (2019), 437-453. |
[27] | M. Subramanian, A. V. Kumar, T. N. Gopal, A writ large analysis of complex order coupled differential equations in the ourse of coupled non-local multi-point boundary conditions, Adv. Stud. Contemp. Math., 29 (2019), 505-520. |
[28] | D. Valerio, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552-578. |
[29] | Z. Yong, W. Jinrong, Z. Lu, Basic theory of fractional differential equations, World Scientific, 2016. |
[30] | F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. A., 371 (2013), 1-26. |