Research article

New fixed point results in double controlled metric type spaces with applications

  • Received: 31 August 2022 Revised: 01 October 2022 Accepted: 10 October 2022 Published: 24 October 2022
  • MSC : 47H10, 45B05, 54H25

  • The concept of an $ { \mathcal F} $-contraction was introduced by Wardowski, while Samet et al. introduced the class of $ \alpha $-admissible mappings and the concept of ($ \alpha $-$ \psi $)-contractive mapping on complete metric spaces. In this paper, we study and extend two types of contraction mappings: ($ \alpha $-$ \psi $)-contraction mapping and ($ \alpha $-$ { \mathcal F} $)-contraction mapping, and establish new fixed point results on double controlled metric type spaces. Moreover, we demonstrate some examples and present an application of our result on the existence and uniqueness of the solution for an integral equation.

    Citation: Fatima M. Azmi. New fixed point results in double controlled metric type spaces with applications[J]. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080

    Related Papers:

  • The concept of an $ { \mathcal F} $-contraction was introduced by Wardowski, while Samet et al. introduced the class of $ \alpha $-admissible mappings and the concept of ($ \alpha $-$ \psi $)-contractive mapping on complete metric spaces. In this paper, we study and extend two types of contraction mappings: ($ \alpha $-$ \psi $)-contraction mapping and ($ \alpha $-$ { \mathcal F} $)-contraction mapping, and establish new fixed point results on double controlled metric type spaces. Moreover, we demonstrate some examples and present an application of our result on the existence and uniqueness of the solution for an integral equation.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles et leur application aux équation sitegrales, Fund. Math., 3 (1922) 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [4] T. Kamran, M. Samreen, Q. UL Ain, A Generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [5] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [6] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [7] H. Ahmad, M. Younis, M. K$\ddot{o}$ksal, Double controlled partial metric type spaces and convergence results, J. Math., 2021 (2021), 7008737. https://doi.org/10.1155/2021/7008737 doi: 10.1155/2021/7008737
    [8] J. Deng, X. Liu, Y. Sun, M. Zhou, Fixed point results for a new rational contraction in double controlled metric-like spaces, Mathematics, 10 (10), 1439. https://doi.org/10.3390/math10091439 doi: 10.3390/math10091439
    [9] N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z
    [10] A. Tas, On double controlled metric-like spaces and related fixed point theorems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 167–172. https://doi.org/10.31197/atnaa.869586 doi: 10.31197/atnaa.869586
    [11] N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type spaces endowed with a graph, Adv. Differ. Equ., 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9 doi: 10.1186/s13662-021-03252-9
    [12] S. Haque, A. Souayah, N. Mlaiki, D. Rizk, Double controlled quasi metric like spaces, Symmetry, 14 (2022), 618. https://doi.org/10.3390/sym14030618 doi: 10.3390/sym14030618
    [13] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 2000, 31–37.
    [14] R. George, S. Rodenović, K. P. Rashma, S. Shukla, Rectangular $b$-metric spaces and contraction principals, J. Nonlinear Sci. Appl., 2015, 1005–1013.
    [15] M. Asim, M. Imdad, S. Radenović, Fixed point results in extended rectangular $b$-metric spaces with an applications, U.P.B. Sci. Bull., Ser. A, 81 (2019), 42–50.
    [16] M. Asim, M. Imdad, S. Shukla, Fixed point results in Geraghty-weak contraction in ordered partial rectangular $b$-metric spaces, Afr. Math., 32 (2021), 811–827. https://doi.org/10.1007/s13370-020-00862-6 doi: 10.1007/s13370-020-00862-6
    [17] M. Asim, S. Mujahid, I. Uddin, Meir-Keeler contraction in rectangular $M$-metric spaces, Topol. Algebra Appl., 9 (2021), 96–104, https://doi.org/10.1515/taa-2021-0106 doi: 10.1515/taa-2021-0106
    [18] H. Salma, F. Azmi, N. Mlaiki, Fredholm type integral equation in controlled rectnagualr metric-like spaces, Symmetry, 14 (2022), 991. https://doi.org/10.3390/sym14050991 doi: 10.3390/sym14050991
    [19] B. Samet, C. Vetro, P. Vetro, Fixed points theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. Theory Methods Appl., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [20] W. Shatanawi, K. Abodayeh, A. Mukheimer, Some fixed point theorems in extended $b$-metric spaces, U.P.B. Sci. Bull., Ser. A, 80 (2018), 71–78.
    [21] A. Mukheimer, $\alpha$-$\psi$-contractive mappings on $b$-metric space, J. Comput. Anal. Appl., 18 (2015), 636–644.
    [22] K. Mehmet, H. Kiziltunc, On some well-known fixed point theorems in $b$-metric spaces, Turk. J. Anal. Number Theory, 1 (2013), 13–16. https://doi.org/10.12691/tjant-1-1-4 doi: 10.12691/tjant-1-1-4
    [23] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [24] A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim, W. Shatanawi, On common fixed points for $\alpha$-$F$-contractions and applications, J. Nonlinear Sci. Appl., 9 (2016), 3445–3458. http://dx.doi.org/10.22436/jnsa.009.05.128 doi: 10.22436/jnsa.009.05.128
    [25] J. Ahmad, A. Al-Mazrooei, H. Aydi, M. De la Sen, On Fixed Point Results in controlled Metric Spaces, J. Funct. Spaces, 2020 (2020), 2108167. https://doi.org/10.1155/2020/2108167 doi: 10.1155/2020/2108167
    [26] J. Vujakovi$\acute{c}$, S. Mitrovi$\acute{c}$, Z. D. Mitrovi$\acute{c}$, S. Radenovi$\acute{c}$, On ${\mathcal F}$-contractions for weak $\alpha$-admissible mappings in metric-like spaces, Mathematics, 8 (2020), 1629. https://doi.org/10.3390/math8091629 doi: 10.3390/math8091629
    [27] J. Vujakovi$\acute{c}$, E. Ljajko, S. Radojevi$\acute{c}$, S. Radenovi$\acute{c}$, On some new Jungck-Fisher-Wardowski type fixed point results, Symmetry, 12 (2020), 2048. https://doi.org/10.3390/sym12122048 doi: 10.3390/sym12122048
    [28] M. Abuloha, D. Rizk, K. Abodayeh, N. Mlaiki, T. Abdeljawad, New results in controlled metric type spaces, J. Math., 2021 (2021), 5575512. https://doi.org/10.1155/2021/5575512 doi: 10.1155/2021/5575512
    [29] E. Karapinar, A. Petruşel, G. Petruşel, On admissible hybrid Geraghty contractions, Carpathian J. Math., 36 (2020), 433–442. https://doi.org/10.37193/CJM.2020.03.11 doi: 10.37193/CJM.2020.03.11
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1451) PDF downloads(111) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog