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1. Introduction

One of the most important fixed point theorems is the Banach contraction principle [1], where he
established the existence and uniqueness of a fixed point for self-contractive mapping in a metric
space setting. Several generalizations and extensions of his result exist in the literature, either through
changing the contraction mapping or generalizing the type of metric spaces. For example, b-metric
space which was introduced by Bakhtin [2], and was later extended by Czerwik [3], is in fact a
fascinating generalization of metric spaces. This generalization led to the study of various fixed point
results for some contractive mappings which led to wide applications in many branches of
mathematics, including nonlinear analysis and its applications. An extended b-metric space was
introduced by Kamran et al. [4]. Later Mlaiki et al. [5] introduced the notion of controlled metric type
spaces, which was generalized into double controlled metric type spaces [6]. Then recently, several
articles appeared on double controlled partial metric type spaces [7], double controlled metric-like
spaces [8–11], and double controlled quasi metric-like spaces [12].
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Another generalization of metric spaces was introduced by Branciari in 2000 [13], where he
replaced the triangular inequality with a quadrilateral inequality, which led to the birth of rectangular
metric space which is a larger class than metric space, and this resulted in the extension of the Banach
contraction theorem to this new setting. In 2015, George et al. [14], generalized rectangular metric
spaces to rectangular b-metric spaces. Asim et al. [15] included a control function to initiate the
concept of extended rectangular b-metric space as a generalization of rectangular b-metric spaces.
More recently many other spaces appeared, such as ordered partial rectangular b-metric spaces [16],
rectangular M-metric spaces [17], and controlled rectangular metric-like spaces [18].

Samet et al. [19] introduced the class of α-admissible mappings on metric spaces and the concept
of (α-ψ)-contractive mapping on complete metric spaces and established some fixed point theorems.
Shatanawi et al. [20] introduced the concept of an (α -ψ)-contraction on extended b-metric space, thus
generalizing the results of Mukheimer [21] and Mehmet and Kiziltunc [22]. Wardowski introduced
another type of contraction mapping, known as an F -contraction in 2012 [23]. Few authors have
studied fixed-point theorems for an F -contraction, and (α- F )-contraction on some complete metric
spaces [24, 25]. In [26] Vujaković et al. dealt with F -contractions for weak α-admissible mappings in
metric-like spaces; moreover, a new Wardowski-type fixed-point results were illustrated in [27].

In this paper, we study and extend two types of contraction mappings: (α-ψ)-contraction mappings
and (α-F )-contraction mappings on double controlled metric type spaces. We establish new fixed-
point results on double controlled metric type spaces. Moreover, we demonstrate some examples and
present an application of our result on the existence and uniqueness of the solution for an integral
equation. It is worth noting that extensions of the Banach contraction principle from metric spaces to
controlled metric type spaces are useful to prove the existence and uniqueness theorem for different
types of integral and differential equations. This illustrates the importance of research in this area.

2. Preliminaries

In 2017, Kamran et al. [4] defined the notion of extended b-metric spaces, which led to the
generalization of various results and work.

Definition 2.1. (see [4]) Consider a mapping A : Xa × Xa → [1,+∞), where Xa is a nonempty set. The
function da : Xa × Xa → [0,+∞) is named an extended b-metric, if, for all x̂, ŷ, ẑ ∈ Xa, the following
holds:

(1) da(x̂, ẑ) = 0⇐⇒ x̂ = ẑ;
(2) da(x̂, ẑ) = da(ẑ, x̂);
(3) da(x̂, ẑ) ≤ A(x̂, ẑ)[da(x̂, ŷ) + da(ŷ, ẑ)].

The pair (Xa, da) is called an extended b-metric space.

An extension of the b-metric spaces into a controlled metric type space was introduced by Mlaiki
et al. [5], as follows:

Definition 2.2. (see [5]) Let β : Xβ × Xβ → [1,+∞) be a mapping, where Xβ is a nonempty set. The
function d̃β : Xβ × Xβ → [0,+∞) is called a controlled metric, if, for all x̂, ŷ, ẑ ∈ Xβ, the following
conditions hold:
(d1) d̃β(x̂, ẑ) = 0⇐⇒ x̂ = ẑ;
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(d2) d̃β(x̂, ẑ) = d̃β(ẑ, x̂);
(d3) d̃β(x̂, ẑ) ≤ β(x̂, ŷ)d̃β(x̂, ŷ) + β(ŷ, ẑ)d̃β(ŷ, ẑ).

The pair (Xβ, d̃β) is called a controlled metric type space.

A more general concept of b-metric type space is called a double controlled metric type space [6],
which is defined below.

Definition 2.3. ( [6]) Consider two non-comparable functions β, µ : Z × Z → [1,+∞), defined on a
nonempty set Z. The mapping d̃β,µ : Z × Z → [0,+∞) is called a double controlled metric type by β
and µ, if, for all z1, z2, z3 ∈ Z, the following conditions hold:
(q1) d̃β,µ(z1, z2) = 0⇐⇒ z1 = z2;
(q2) d̃β,µ(z1, z2) = d̃β,µ(z2, z1);
(q3) d̃β,µ(z1, z2) ≤ β(z1, z3)d̃β,µ(z1, z3) + µ(z3, z2)d̃β,µ(z3, z2).

The pair (Z, d̃β,µ) is called a double controlled metric type space (in short we will denote it by
DCMTS).

Remark 2.4. Every controlled metric type space is a DCMTS when both functions β and µ are taken to
be the same function, i.e. β = µ. The converse is not true in general, as the below example illustrates.
Furthermore, in Definition 2.3, β and µ are non-comparable functions, which means none of them is
greater or equal to the other.

Example 2.5. ( [6]) LetZ = [0,+∞); define the mapping d̃β,µ : Z×Z → [0,+∞) by

d̃β,µ(x, y) =


0 iff x = y,
1
x if x ≥ 1 and y ∈ [0, 1),
1
y if y ≥ 1 and x ∈ [0, 1),

1 otherwise.

Let β, µ : Z×Z → [1,+∞) be two functions defined by

β(x, y) =

x if x, y ≥ 1,
1 otherwise,

and

µ(x, y) =

1 if x, y < 1,
max{x, y} otherwise.

Then (Z, d̃β,µ) is a double controlled metric type space. First, note that Conditions (q1) and (q2)
hold. To show that Condition (q3) is satisfied, we note that if either z = x or z = y, then (q3) holds.
Thus, suppose x , y, which means x , y , z. We consider the following cases:

Case 1: If x ≥ 1 and y ∈ [0, 1), or y ≥ 1 and x ∈ [0, 1), then for any z, clearly Condition (q3) is
satisfied.

Case 2: If x, y > 1, and z ≥ 1, then one can easily observe that d̃β,µ(x, y) = 1 ≤ x(1) + max{y, z}(1).
While, if z ∈ [0, 1), then we obtain

d̃β,µ(x, y) = 1 ≤
1
x

+ y
1
y

; hence, (q3) is satisfied.
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Case 3: If x, y < 1 and z ≥ 1, we obtain

d̃β,µ(x, y) = 1 ≤
1
z

+ z
1
z
.

While, if z ∈ [0, 1), then easily Condition (q3) holds. Therefore, (Z, d̃β,µ) is a double controlled metric
type space, which is not a controlled metric type space; by taking β = µ, we observe

d̃β(0,
1
2

) = 1 >
1
2

=
1
4

+
1
4

= β(0, 4)d̃β(0, 4) + β(4,
1
2

)d̃β(4,
1
2

).

Definition 2.6. Let (Z, d̃β,µ) be a DCMTS, and let {zn}n≥0 be any sequence in Z. Then
(1) For any z ∈ Z and ε > 0, the open ball B(z, ε) is defined as

B(z, ε) = {w ∈ Z, d̃β,µ(z,w) < ε}.

(2) A sequence {zn} is said to converge to some w in Z if, for every ε > 0, there exists N = N(ε) ∈ N,
such that d̃β,µ(zn,w) < ε for all n ≥ N. In this case, we write limn→+∞ zn = w.

(3) We say that {zn} is a Cauchy sequence if, for every ε > 0, there exists N = N(ε) ∈ N such that
d̃β,µ(zm, zn) < ε for all m, n ≥ N.

(4) The space (Z, d̃β,µ) is called complete if every Cauchy sequence in Z is convergent.
(5) The mapping T : Z → Z is said to be continuous at z ∈ Z if, for all ε > 0, there exists δ > 0

such that T (B(z, δ)) ⊆ B(Tz, ε). The continuity of the mapping T at w can also be defined in terms of
convergent sequences; thus, if zn → w, then Tzn → Tw as n→ +∞.

To see how the open ball looks, consider Example 2.5, taking x = 3 and ε = 1/2 > 0; then,

B(3, 1/2) = {w ∈ Z, d̃β,µ(3,w) < 1/2} = {3,w ∈ [0, 1)}.

3. (α-ψ)-contraction and fixed point theorems

Let Ψ denote the set of all functions ψ : [0,+∞)→ [0,+∞) such that

(1) ψ is non-decreasing,
(2)

∑+∞
n=1 ψ

n(t) < +∞ for all t > 0, where ψn is the n-th iterate of ψ.

Now, we recall the following lemma; consult [19, 20].

Lemma 3.1. For each ψ ∈ Ψ, the following holds:

(1) limn→+∞ ψ
n(t) = 0, for all t > 0;

(2) ψ(t) < t for all t > 0;
(3) ψ(0) = 0.

We start by presenting a definition of the set of double controlled comparison functions, Ψβ,µ, which
will be defined as an extension of the b-comparison function of Berinde, and the set of all controlled
comparison functions [28].

Definition 3.2. Consider two non-comparable mappings β, µ : Z × Z → [1,+ + ∞), where Z is a
nonempty set. A function ψ ∈ Ψ is said to be a double controlled comparison function if ψ satisfies the
following conditions:
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(1) ψ is non-decreasing;
(2)

∑+∞
n=1 ψ

n(t)
∏n

i=1 µ(zi, zm)β(zn, zn+1) < +∞ and limn→+∞ ψ
n(t)β(zn, zn+1) < +∞ for any sequence

{zn}
+∞
n=1 in Z, for all t > 0 and for the non-negative integer m, where ψn is the n-th iterate of ψ.

The set of all double controlled comparison functions will be denoted by Ψβ,µ.
Observe that when β = µ, then the double controlled comparsion function Ψβ,µ becomes the

controlled comparison function as defined in [28].

Note that if ψ ∈ Ψβ,µ, then we have
∑+∞

n=1 ψ
n(t) < +∞, since ψn(t)

∏n
i=1 µ(zi, zm) ≥ ψn(t), for all t > 0.

Also,

ψn(t)
n∏

i=1

µ(zi, zm)β(zn, zn+1) ≥ ψn(t).

Hence, by Lemma 3.1, we have ψ(t) < t.
The family Ψβ,µ is a non-empty set, as the below example illustrates.

Example 3.3. Let Z = {0, 1, 2}. Define two symmetric functions β, µ : Z × Z → [1,+∞) by

β(0, 0) = β(2, 2) = β(1, 1) = β(0, 2) = 1, β(1, 2) =
5
8
, β(0, 1) =

11
10
,

and
µ(0, 0) = µ(2, 2) = µ(1, 1) = 1, µ(0, 2) =

3
2
, µ(1, 2) =

5
4
, µ(0, 1) =

11
10
.

The mapping d̃β,µ is given by

d̃β,µ(0, 0) = d̃β,µ(1, 1) = d̃β,µ(2, 2) = 0,

and
d̃β,µ(0, 1) = d̃β,µ(1, 0) = 1, d̃β,µ(0, 2) = d̃β,µ(2, 0) =

1
2
, d̃β,µ(1, 2) = d̃β,µ(2, 1) =

2
5
.

One can easily show that (Z, d̃β,µ) is a DCMTS. Let 0 < a < 1; define the function ψ(t) = at
3 . Note that

β(z1, z2) ≤ 3 and µ(z1, z2) ≤ 3. Then we have

ψn(t)
n∏

i=1

µ(zi, zm)β(zn, zn+1) ≤
ant
3n .3

n+1 = 3ant.

Thus,
+∞∑
n=1

ψn(t)
n∏

i=1

µ(zi, zm)β(zn, zn+1) ≤
+∞∑
n=1

3ant < +∞.

Similarly, one can easily show that limn→+∞ ψ
n(t)β(zn, zn+1) < +∞. Therefore, ψ ∈ Ψβ,µ.

Samet et al. [19] introduced the class of α-admissible mappings; see also [29].

Definition 3.4. Let (Z, d̃β,µ) be a DCMTS, where Z is a nonempty set, and let α : Z × Z → [0,+∞). A
mapping T : Z −→ Z is said to be α-admissible if, whenever α(x̂, ŷ) ≥ 1, it implies α(T x̂,T ŷ) ≥ 1, for
all x̂, ŷ ∈ Z.
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Example 3.5. Let Z = (0,+∞). Define α : Z × Z → [0,+∞) and T : Z −→ Z by

α(x, y) =

5 if x ≥ y,

0 otherwise,

and T (x) = ln(x) for all x ∈ Z. Then, T is α-admissible, consult [19] for more examples.

Definition 3.6. Let T : Z → Z be a mapping on a DCMTS (Z, d̃β,µ), where Z is a nonempty set, and let
Ψβ,µ be a double controlled comparison function, as in Definition 3.2. Then T is said to be an (α-ψ)-
double contractive mapping if there exist functions α : Z × Z → [0,+∞) and ψ ∈ Ψβ,µ such that for all
x, y ∈ Z, the following holds,

α(x, y)d̃β,µ(T x,Ty) ≤ ψ(d̃β,µ(x, y)). (3.1)

Our first main result on the fixed point theorem is as follows.

Theorem 3.7. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be an (α-ψ)-double contractive
mapping for some ψ ∈ Ψβ,µ. Assume the following holds:

(1) T is α-admissible;
(2) There exists z0 ∈ Z such that α(z0,Tz0) ≥ 1;
(3) T is continuous.

Then, T has a fixed point. Moreover, if for any two fixed points of T in Z say, a and b with α(a, b) ≥ 1,
then T has a unique fixed point in Z.

Proof. Let z0 ∈ Z such that α(z0,Tz0) ≥ 1. Define the sequence {zn}n≥0 in Z by Tz0 = z1 and Tz1 = z2;
thus, T nz0 = zn for all n ∈ N.

Observe that if zn = zn+1 for some n ∈ N, then we are done, and zn is the fixed point of T . Therefore,
we may assume that zn , zn+1 for all n ∈ N.

From the hypothesis, we know that 1 ≤ α(z0,Tz0) = α(z0, z1), and using the fact that T is α-
admissible, we can easily deduce that for all n ∈ N, we have α(zn, zn+1) ≥ 1.

As T is an (α-ψ)-double contractive mapping, we obtain

d̃β,µ(zn, zn+1) ≤ α(zn−1, zn)d̃β,µ(zn, zn+1)
= α(zn−1, zn)d̃β,µ(Tzn−1,Tzn)
≤ ψ(d̃β,µ(zn−1, zn)) ≤ .... ≤ ψn(d̃β,µ(z0, z1)). (3.2)

Therefore, let m, n ∈ N, with m > n, and by utilizing the triangular inequality of the double controlled
metric type, we get

d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)d̃β,µ(zn+1, zm). (3.3)
≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)[β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)

+ µ(zn+2, zm)d̃β,µ(zn+2, zm)].
d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)

+ µ(zn+1, zm)µ(zn+2, zm)d̃β,µ(zn+2, zm). (3.4)
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d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)
+ µ(zn+1, zm)µ(zn+2, zm)β(zn+2, zn+3)d̃β,µ(zn+2, zn+3)
+ µ(zn+1, zm)µ(zn+2, zm)µ(zn+3, zm)d̃β,µ(zn+3, zm).
≤ β(zn, zn+1)ψn(d̃β,µ(z0, z1))

+ µ(zn+1, zm)β(zn+1, zn+2)ψn+1(d̃β,µ(z0, z1))
+ µ(zn+1, zm)µ(zn+2, zm)β(zn+2, zn+3)ψn+2(d̃β,µ(z0, z1))
...

+ µ(zn+1, zm)µ(zn+2, zm)µ(zn+3, zm)......β(zm−2, zm−1)ψm−2(d̃β,µ(z0, z1))
+ µ(zn+1, zm)µ(zn+2, zm)µ(zn+3, zm)......µ(zm−1, zm)ψm−1(d̃β,µ(z0, z1)). (3.5)

d̃β,µ(zn, zm) ≤ β(zn, zn+1)ψn(d̃β,µ(z0, z1)) +

m−2∑
j=n+1

ψ j(d̃β,µ(z0, z1))
j∏

i=n+1

µ(zi, zm)β(z j, z j+1)

+

m−1∏
i=n+1

µ(zi, zm)ψm−1(d̃β,µ(z0, z1)). (3.6)

d̃β,µ(zn, zm) ≤ β(zn, zn+1)ψn(d̃β,µ(z0, z1)) +

m−1∑
j=n+1

ψ j(d̃β,µ(z0, z1))

 j∏
i=n+1

µ(zi, zm)

 β(z j, z j+1).

≤ β(zn, zn+1)ψn(d̃β,µ(z0, z1)) + (Ωm−1 −Ωn−1), (3.7)

where

Ωp =

p∑
j=1

ψ j(d̃β,µ(z0, z1))
j∏

i=1

µ(zi, zm)β(z j, z j+1). (3.8)

By the properties of the double controlled comparison functions ψ ∈ Ψβ,µ, we have that
limn→+∞ ψ

n(t)β(zn, zn+1) is finite and converges. Moreover, using the ratio test on Ωp, one can easily
deduce that limn,m→+∞[Ωm−1 − Ωn−1] = 0. Therefore, {zn}n≥0 is a Cauchy sequence. The completeness
of the DCMTS (Z, d̃β,µ) implies that {zn} converges to some z ∈ Z, i.e. limn→∞ d̃β,µ(zn, z) = 0. By (q3)
of Definition 2.3, we obtain

d̃β,µ(z,Tz) ≤ β(z, zn+1)d̃β,µ(z, zn+1) + µ(zn+1,Tz)d̃β,µ(zn+1,Tz).
= β(z, zn+1)d̃β,µ(z, zn+1) + µ(zn+1,Tz)d̃β,µ(Tzn,Tz).

Taking the limit as n tends to infinity in the above inequality, and the fact that T is continuous, we
have that Tzn → Tz, i.e. limn→∞ d̃β,µ(Tzn,Tz) = d̃β,µ(Tz,Tz) = 0, so we obtain d̃β,µ(z,Tz) = 0; that is,
Tz = z. Thus, T has a fixed point as desired.

To prove the uniqueness of the fixed point, assume T has two fixed points, say, a, b, i.e., T (a) = a
and T (b) = b, such that α(a, b) ≥ 1. Using the fact that T is an (α-ψ)-double contractive mapping
which is α-admissible, we obtain

d̃β,µ(a, b) = d̃β,µ(Ta,Tb).
≤ α(a, b)d̃β,µ(Ta,Tb).
≤ ψ(d̃β,µ(a, b))

AIMS Mathematics Volume 8, Issue 1, 1592–1609.



1599

...

≤ ψn(d̃β,µ(a, b)).

Since ψ ∈ Ψβ,µ, taking the limit as n tends to infinity in the above inequalities, we deduce by Lemma 3.1
that d̃β,µ(a, b) = 0, which implies that a = b. Thereby, T has a unique fixed point.

�

Example 3.8. Let Z = [0,+∞), and consider the mapping d̃β,µ : Z×Z → [0,+∞) defined by d̃β,µ(x, y) =

|x− y|. Then (Z, d̃β,µ) is a complete DCMTS controlled by two functions β, µ : Z ×Z → [1,+∞), where

β(x, y) = max{x, y} + 1, and µ(x, y) = max{x, y} + 2.

Let the mapping T : Z → Z be defined by

T (x) =

2x − 17
9 if x > 1,

x
9 if 0 ≤ x ≤ 1.

We define two functions, α : Z × Z → (−∞,+∞) and ψ(t) : [0,+∞)→ [0,+∞) by

α(x, y) =

1 if x, y ∈ [0, 1],
0 otherwise,

and ψ(t) = 1
9 t. Let x0 = 1; then, x1 = T (1) = 1

9 . Hence, xn = T n(1) = 1
9n for all n ≥ 1. Note that

β(xn, xn+1) ≤ 2, µ(xn, xn+1) ≤ 3, and ψn(t) = 1
9n t. One can easily show that

+∞∑
n=1

ψn(t)
n∏

i=1

µ(zi, zm)β(zn, zn+1) ≤
+∞∑
n=1

t(
6
9

)n < +∞.

Similarly, one can show that limn→+∞ ψ
n(t)β(zn, zn+1) < +∞. Therefore, ψ ∈ Ψβ,µ.

We will show the mapping T satisfies the conditions of Theorem 3.7. Clearly, T is continuous,
and it is α-admissible since if α(x, y) ≥ 1, x, y ∈ [0, 1], so T x = x

9 ∈ [0, 1], and Ty =
y
9 ∈ [0, 1];

consequently, α(T x,Ty) ≥ 1. Furthermore, with x0 = 1, we have that α(1,T (1)) = α(1, 1
9 ) = 1 ≥ 1. To

verify that T is an (α -ψ)-double contractive mapping, consider any x, y ∈ Z; the case if x > 1 or y > 1
is trivial; thus, assume x, y ∈ [0, 1]; we have

α(x, y)d̃β,µ(T x,Ty) = |
x
9
−

y
9
| =

1
9
|x − y| ≤ ψ(d̃β,µ(x, y)).

Therefore, T satisfies all of the conditions of Theorem 3.7. Consequently, T has a fixed point, which
is x = 0.

The following is an immediate consequence of Theorem 3.7.

Corollary 3.9. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be an (α-ψ)-double contractive
mapping satisfying the following conditions:

(1) T is continuous.
(2) There exists ψ ∈ Ψβ,µ, such that d̃β,µ(Tz,Tw) ≤ ψ(d̃β,µ(z,w)) for all z,w ∈ Z.
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Then, T has a unique fixed point.

Proof. Define the function α : Z×Z → [0,+∞) via α(z,w) = 1. Then, T is α-admissible. Furthermore,
T satisfies all of the conditions of Theorem 3.7, so T has a unique fixed point. �

Corollary 3.10. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be an α-admissible map
satisfying the following conditions:

(1) There exists z0 ∈ Z such that α(z0,Tz0) ≥ 1.
(2) T is continuous.
(3) There exists r ∈ [0, 1) such that for any sequence {zn}

+∞
n=1 in Z,

+∞∑
n=1

(rt)n
n∏

i=1

µ(zi, zm)β(zn, zn+1) < +∞,

and limn→+∞(rt)nβ(zn, zn+1) < +∞ for all t > 0.
(4) For any z,w ∈ Z, the mapping T satisfies α(z,w)d̃β,µ(Tz,Tw) ≤ r(d̃β,µ(z,w)).

Then, T has a fixed point.

Proof. Define a map ψ : [0,+∞) → [0,+∞) via ψ(t) = rt. Then T is an (α-ψ) double contractive
mapping. Moreover, T satisfies all of the conditions of Theorem 3.7; therefore, T has a fixed point. �

In the following theorem, the hypothesis of continuity is replaced with a weaker condition.

Theorem 3.11. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be an (α-ψ)-double contractive
mapping for some ψ ∈ Ψβ,µ. Suppose that the following conditions hold:

(1) T is α-admissible.
(2) There exists z0 ∈ Z such that α(z0,Tz0) ≥ 1.
(3) If {zn} is a sequence in Z such that α(zn, zn+1) ≥ 1 and zn → z as n→ +∞, then α(zn, z) ≥ 1 for all

n.

Then, T has a fixed point. Moreover, if we assume that for all x, y ∈ Z, there exists w ∈ Z such that
α(x,w) ≥ 1 and α(y,w) ≥ 1, then T has a unique fixed point.

Proof. To prove this result, we repeat the same steps as in the proof of Theorem 3.7; thus, we construct
a sequence {zn} that converges to a point z ∈ Z. The constructed sequence has the property α(zn, zn+1) ≥
1, for all n ∈ N. The last assumption of the result implies that α(zn, z) ≥ 1. Finally, we prove that z is a
fixed point for T . The double controlled triangle inequality implies that

d̃β,µ(z,Tz) ≤ β(z, zn+1)d̃β,µ(z, zn+1) + µ(zn+1,Tz)d̃β,µ(zn+1,Tz). (3.9)

Note that the first term on the right-hand side of (3.9), β(z, zn+1)d̃β,µ(z, zn+1) converges to 0 since the
sequence {zn} converges to 0. As for the second term, using the fact that α(zn, z) ≥ 1, and by (3.2) of
Theorem 3.7, we obtain

µ(zn+1,Tz)d̃β,µ(zn+1,Tz) ≤ µ(zn+1,Tz)d̃β,µ(Tzn,Tz)α(zn, z),
≤ µ(zn+1,Tz)ψ(d̃β,µ(zn, z)),≤ µ(zn+1,Tz)d̃β,µ(zn, z).
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Hence, µ(zn+1,Tz)d̃β,µ(zn+1,Tz) converges to 0, as n tends to infinity. Therefore, d̃β,µ(z,Tz) = 0, and
z is a fixed point for T .

To prove the uniqueness of the fixed point, suppose a, b are two fixed points of T , i.e. T (a) = a, and
T (b) = b. Hence, there exists w ∈ Z such that α(a,w) ≥ 1 and α(b,w) ≥ 1. Since T is α-admissible,
we obtain α(a,T nw) ≥ 1, and α(b,T nw) ≥ 1, for all n ∈ N. Thus we have

d̃β,µ(a,T nw) = d̃β,µ(Ta,T nw).
≤ α(a,T n−1w)d̃β,µ(Ta,T nw)).
≤ ψ(d̃β,µ(a,T n−1w)).

...

≤ ψn(d̃β,µ(a,w)).

Since ψ ∈ Ψβ,µ, taking the limit as n tends to infinity in the above inequalities we deduce that
limn→+∞ T nw = a. Next, repeating the same process with the other fixed point, we obtain
limn→+∞ T nw = b. From the uniqueness of the limit, we deduce that a = b. Hence, T has a unique
fixed point. �

4. Wardowski and (α-F )-contractions and fixed-point theorems

A new type of contractions known as F -contractions was introduced by Wardowski in 2012 [23],
which resulted in establishing new fixed point theorems in complete metric spaces.

Definition 4.1. Let F be the family of all functions F : (0,+∞)→ (−∞,+∞) satisfying the following:
(F1) F is a strictly increasing function.
(F2) For each sequence {sn} of postive real numbers, the following holds:

lim
n→+∞

sn = 0 ⇐⇒ lim
n→+∞

F(sn) = −∞.

(F3) There exists k ∈ (0, 1) 3 lims→0+ skF(s) = 0.

The family F is not empty, as the below examples illustrate.

Example 4.2. Consider the following functions: G(s) = ln(s), H(s) = −1
√

s and L(s) = ln(s)+ s for s > 0.
Clearly each one of these functions satisfies the conditions (F1), (F2) and (F3); thus, they belong to
F . For more details, consult [23].

Definition 4.3. A self mapping T : Z → Z defined on a DCMTS (Z, d̃β,µ), where Z is a nonempty set, is
said to be an F -contraction if there exist a function F ∈ F and a constant τ > 0 such that the following
holds:

d̃β,µ(T x,Ty) > 0 =⇒ τ + F(d̃β,µ(T x,Ty)) ≤ F(d̃β,µ(x, y)), for all x, y ∈ Z. (4.1)

Next, we define the (α- F )-contraction mappings on a DCMTS.

Definition 4.4. Let (Z, d̃β,µ) be a DCMTS, where Z is a nonempty set. A self-mapping T : Z → Z is
said to be an (α- F )-contraction mapping, if there exists a mapping α : Z × Z → [0,+∞), F ∈ F and a
constant τ > 0, such that the following holds

τ + α(x, y)F(d̃β,µ(T x,Ty)) ≤ F(d̃β,µ(x, y)), (4.2)

for all x, y ∈ Z, with d̃β,µ(T x,Ty) > 0.
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Next, we state our main fixed point theorem.

Theorem 4.5. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be (α- F )-contractive mapping,
such that the following holds:

(1) T is α-admissible.
(2) There exists z0 ∈ Z such that α(z0,Tz0) ≥ 1.
(3) T is continuous.
(4) For z0 ∈ Z, define the seqeunce {zn} by zn = T nz0, and assume

sup
m≥1

lim
i→+∞

β(zi+1, zi+2)
β(zi, zi+1)

µ(zi+1, zm) < 1. (4.3)

In addition, for each z ∈ Z

lim
n→+∞

β(z, zn) and lim
n→+∞

µ(zn, z) exist and are finite. (4.4)

Then, T has a fixed point. Moreover, if for any two fixed points of T in Z, say ξ, and η with
α(ξ, η) ≥ 1, then T has a unique fixed point in Z.

Proof. Let z0 be chosen as in Condition (2), where α(z0,Tz0) ≥ 1. Define the sequence {zn} as follows,
let Tz0 = z1,T 2z0 = Tz1 = z2; thus, for any n ∈ N, we obtain

T nz0 = T n−1z1 = · · · = Tzn−1 = zn.

Note that if there exists n, such that zn = zn+1, then we are done and zn is the fixed point of T .
Therefore, we may assume that zn , zn+1 for all n ≥ 0.

As T is α-admissible, for all n ≥ 0 , α(zn, zn+1) ≥ 1. Now, using (4.2), we have

τ + F(d̃β,µ(zn, zn+1)) = τ + F(d̃β,µ(Tzn−1, zn+1)).
≤ τ + α(zn, zn+1)F(d̃β,µ(Tzn−1,Tzn)).
≤ F(d̃β,µ(zn−1, zn)),

which gives F(d̃β,µ(zn, zn+1)) ≤ F(d̃β,µ(zn−1, zn)) − τ. Repeating the processing several times, we obtain

F(d̃β,µ(zn, zn+1)) ≤ F(d̃β,µ(zn−1, zn)) − τ. (4.5)
≤ F(d̃β,µ(zn−2, zn−1)) − 2τ.
≤ · · · ≤ F(d̃β,µ(z0, z1)) − nτ.

Letting n→ +∞ in (4.5), and since τ > 0, we have

lim
n→+∞

F(d̃β,µ(zn, zn+1)) = −∞. (4.6)

Since F ∈ F , by (F2), it follows that limn→+∞ d̃β,µ(zn, zn+1) = 0. By (F3), there exists k ∈ (0, 1), such
that

lim
n→+∞

(d̃β,µ(zn, zn+1))kF(d̃β,µ(zn, zn+1)) = 0. (4.7)
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From (4.5), we get
F(d̃β,µ(zn, zn+1)) − F(d̃β,µ(z0, z1)) ≤ −nτ.

Which implies
(d̃β,µ(zn, zn+1))kF(d̃β,µ(zn, zn+1)) − (d̃β,µ(zn, zn+1))kF(d̃β,µ(z0, z1))

≤ −nτ(d̃β,µ(zn, zn+1))k ≤ 0. (4.8)

Taking the limit as n tends to infinity in (4.8), we have

lim
n→+∞

n((d̃β,µ(zn, zn+1))k = 0. (4.9)

Therefore, limn→+∞ n1/k(d̃β,µ(zn, zn+1)) = 0, so there exists some n0 ∈ N, such that

d̃β,µ(zn, zn+1) ≤
1

n1/k , f or all n ≥ n0. (4.10)

For all m, n ∈ N with m > n, and using the triangular inequality as in (3.3), we deduce:

d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)d̃β,µ(zn+1, zm).
≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)[β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)

+ µ(zn+2, zm)d̃β,µ(zn+2, zm)].
= β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)

+ µ(zn+1, zm)µ(zn+2, zm)d̃β,µ(zn+2, zm).
≤ β(zn, zn+1)d̃β,µ(zn, zn+1) + µ(zn+1, zm)β(zn+1, zn+2)d̃β,µ(zn+1, zn+2)

+ µ(zn+1, zm)µ(zn+2, zm)[β(zn+2, zn+3)d̃β,µ(zn+2, zn+3)
+ µ(zn+3, zm)d̃β,µ(zn+3, zm)].
...

d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) +

m−2∑
i=n+1

 i∏
j=n+1

µ(z j, zm)

 β(zi, zi+1)d̃β,µ(zi, zi+1)

+

m−1∏
k=n+1

µ(zk, zm)d̃β,µ(zm−1, zm).

≤ β(zn, zn+1)d̃β,µ(zn, zn+1) +

m−2∑
i=n+1

 i∏
j=n+1

µ(z j, zm)

 β(zi, zi+1)d̃β,µ(zi, zi+1)

+

m−1∏
k=n+1

µ(zk, zm)β(zm−1, zm)d̃β,µ(zm−1, zm).

d̃β,µ(zn, zm) ≤ β(zn, zn+1)d̃β,µ(zn, zn+1) +

m−1∑
i=n+1

 i∏
j=n+1

µ(z j, zm)

 β(zi, zi+1)d̃β,µ(zi, zi+1).

≤ β(zn, zn+1)d̃β,µ(zn, zn+1) +

m−1∑
i=n+1

 i∏
j=0

µ(z j, zm)

 β(zi, zi+1)d̃β,µ(zi, zi+1).
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Applying (4.10) in the last inequality implies d̃β,µ(zi, zi+1) ≤ 1
i1/k ; we obtain

d̃β,µ(zn, zm) ≤ β(zn, zn+1)(
1

n1/k ) +

m−1∑
i=n+1

 i∏
j=0

µ(z j, zm)

 β(zi, zi+1)(
1

i1/k ).

= β(zn, zn+1)(
1

n1/k ) + [∆m−1 − ∆n], (4.11)

where

∆p =

p∑
i=1

 i∏
j=0

µ(z j, zm)

 β(zi, zi+1)(
1

i1/k ). (4.12)

By using the ratio test and applying (4.3), and the fact that ( i
i+1 )1/k < 1 as k ∈ (0, 1), we obtain

limn,m→+∞[∆m−1 − ∆n] = 0. Furthermore, by (4.4) we deduce that limn→+∞ β(zn, zn+1)( 1
n1/k ) = 0. Hence

lim
n,m→+∞

d̃β,µ(zn, zm) = 0. (4.13)

Thus, {zn} is a Cauchy sequence in a complete DCMTS (Z, d̃β,µ); therefore, it converges to some
ξ ∈ Z.

Next, we show that ξ is a fixed point of T , i.e. Tξ = ξ. Since T is continuous and
limn→+∞ d̃β,µ(zn, ξ) = 0, we have that limn→+∞ d̃β,µ(Tzn,Tξ) = 0. This gives us

d̃β,µ(ξ,Tξ) = lim
n→+∞

d̃β,µ(zn+1,Tξ) = lim
n→+∞

d̃β,µ(Tzn,Tξ) = 0; (4.14)

hence Tξ = ξ.
To prove the uniqueness of the fixed point, assume there exist two fixed points, ξ and η, such that

ξ , η and α(ξ, η) ≥ 1. Hence Tξ = ξ , η = Tη implies that d̃β,µ(Tξ,Tη) > 0. For τ > 0, Eq (4.2) gives

τ + F(d̃β,µ(Tξ,Tη)) ≤ τ + α(ξ, η)F(d̃β,µ(Tξ,Tη)).
≤ F(d̃β,µ(ξ, η)) = F(d̃β,µ(Tξ,Tη)),

which indicates that τ ≤ 0, thus reaching a contradiction. Hence ξ = η and the fixed point is unique. �

Next, we present a supporting example for Theorem 4.5.

Example 4.6. Let Z = [0,+∞) and consider the mapping d̃β,µ : Z×Z → [0,+∞) defined by d̃β,µ(x, y) =

|x − y|. Then (Z, d̃β,µ) is a complete DCMTS, where β, µ : Z × Z → [1,+∞) are defined by β(x, y) =

max{x, y} + 1, and

µ(x, y) =

x + y if x ∈ [0, 1],
1 if x > 1.

Let the mapping T : Z → Z be

T (x) =

 x
3 if x ∈ [0, 1],
x − 2

3 if x > 1.

Let α : Z × Z → (−∞,+∞), and F : (0,+∞)→ (−∞,+∞) be defined by,

AIMS Mathematics Volume 8, Issue 1, 1592–1609.



1605

α(x, y) =

1 if x, y ∈ [0, 1],
0 otherwise,

and F(t) = ln(t). Clearly, T is continuous, and it is α-admissible since if α(x, y) ≥ 1, x, y ∈ [0, 1];
consequently, α(T x,Ty) = α( x

3 ,
y
3 ) ≥ 1. To show that T is an (α-F )-contraction mapping, we only

need to look at the case when x, y ∈ [0, 1]. Note that

d̃β,µ(T x,Ty) = |T x − Ty| =
1
3
|x − y| =

1
3

d̃β,µ(x, y) <
2
3

d̃β,µ(x, y).

Hence
ln(

3
2

) + α(x, y)ln(d̃β,µ(T x,Ty)) ≤ ln(
3
2

) + ln(d̃β,µ(T x,Ty)) ≤ ln(d̃β,µ(x, y)). (4.15)

By taking τ = ln( 3
2 ) > 0 in (4.15), we have

τ + α(x, y)F(d̃β,µ(T x,Ty)) ≤ F(d̃β,µ(x, y)).

Hence, T is an (α-F )-contraction mapping. Let x0 = 1; then, α(x0,T x0) ≥ 1. We form a sequence by
x1 = T (x0) = T (1) = 1

3 ; hence, xn = T n(x0) = T n(1) = 1
3n for all n ≥ 1. Finally to show that (4.3) and

(4.4) hold, observe that

sup
m≥1

lim
i→+∞

β(xi+1, xi+2)
β(xi, xi+1)

µ(xi+1, xm) = sup
m≥1

lim
i→+∞

(
max{ 1

3i+1 ,
1

3i+2 } + 1)

max{ 1
3i ,

1
3i+1 } + 1)

)(
1

3i+1 +
1

3m ) < 1. (4.16)

Moreover for any x ∈ Z, both limn→+∞ β(x, xn) and limn→+∞ µ(xn, x) exist and are finite. Therefore,
T satisfies all of the conditions of Theorem 4.5. Consequently, T has a fixed point, which is x = 0.

The following is an immediate consequence of Theorem 4.5.

Corollary 4.7. Let (Z, d̃β,µ) be a complete DCMTS, and let T : Z → Z be a continuous mapping
satisfying the following:

τ + F(d̃β,µ(Tξ,Tη)) ≤ F(d̃β,µ(ξ, η)), for all ξ, η ∈ Z. (4.17)

Let ξ0 ∈ Z and consider the sequence ξn = T nξ0. Suppose

sup
m≥1

lim
i→+∞

β(ξi+1, ξi+2)
β(ξi, ξi+1)

µ(ξi+1, ξm) < 1. (4.18)

Also, assume the following holds

lim
n→+∞

β(ξ, ξn) and lim
n→+∞

µ(ξn, ξ) exist and are finite for every ξ ∈ Z. (4.19)

Then, T has a unique fixed point.

Proof. Let the map α : Z × Z → [0,+∞) be defined by α(ξ, η) = 1 for all ξ, η ∈ Z. Repeat the proof of
Theorem 4.4 by considering the defined α. �

Letting β = µ, in Theorem 4.5, we obtain the following corollary; for comparison, see [25].
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Corollary 4.8. Let (Z, d̃β) be a complete DCMTS, and let T : Z → Z be an (α-F )-contractive mapping,
such that the following holds:

(1) T is α-admissible.
(2) There exists z0 ∈ Z such that α(z0,Tz0) ≥ 1.
(3) T is continuous.
(4) For z0 ∈ Z, define the sequence {zn} by zn = T nz0, and assume

sup
m≥1

lim
i→+∞

β(zi+1, zi+2)
β(zi, zi+1)

β(zi+1, zm) < 1. (4.20)

In addition, for each z ∈ Z

lim
n→+∞

β(z, zn) and lim
n→+∞

β(zn, z) exist and are finite. (4.21)

Then, T has a fixed point.

Proof. In Theorem 4.5, let µ = β and repeat the proof. �

5. Application to Fredholm type integral equation

Let Z = C([0, 1],R) be the space of all continuous real valued functions defined on the interval
[0, 1]. Let the mapping d̃β,µ : Z × Z −→ [0,+∞) be defined by

d̃β,µ( f , g) = maxt∈[0,1]|
f (t) − g(t)

2
|.

The two controlled functions β, µ : Z × Z → [1,+∞) are defined by β( f , g) = 1 and
µ( f , g) = 2, respectively. It is not difficult to see that (Z, d̃β,µ) is a complete DCMTS.

The Fredholm type integral equation is defined as

f (t) =

∫ 1

0
χ(t, ξ, f (ξ))dξ for t, ξ ∈ [0, 1], (5.1)

where χ(t, ξ, f (ξ)) : [0, 1]2 −→ R is a continuous function.

Theorem 5.1. Consider (Z, d̃β,µ) a complete DCMTS, as defined above, and assume for any f , g ∈ Z
the following condition holds:

|χ(t, ξ, f (ξ)) − χ(t, ξ, g(ξ))| ≤ λ| f (ξ) − g(ξ)|, for some λ ∈ (0, 1).

Then, the integral equation (5.1) has a unique solution.

Proof. Let the mapping T : Z −→ Z be defined as a Fredholm type integral equation:

T f (t) =

∫ 1

0
χ(t, ξ, f (ξ))dξ, for t, ξ ∈ [0, 1]. (5.2)

Define the mapping α : Z × Z → [0,+∞) by
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α( f , g) =


1/2 if f = g,

1/4 if f = 0, or g = 0,
|g|/| f | if f > g,

1 if f < g.

Let ψ(t) : [0,+∞)→ [0,+∞) be defined by ψ(t) = λt. For any t ∈ [0, 1], we have

∣∣∣∣T f (t) − Tg(t)
2

∣∣∣∣ =
1
2

∣∣∣∣ ∫ 1

0
χ(t, ξ, f (ξ))dξ −

∫ 1

0
χ(t, ξ, g(ξ))dξ

∣∣∣∣
=

1
2

∣∣∣∣ ∫ 1

0

[
χ(t, ξ, f (ξ)) − χ(t, ξ, g(ξ))

]
dξ

∣∣∣∣
≤

1
2

∫ 1

0

∣∣∣χ(t, ξ, f (ξ)) − χ(t, ξ, g(ξ))
∣∣∣dξ

≤
1
2

∫ 1

0
λ| f (ξ) − g(ξ)|dξ

≤ λ d̃β,µ( f , g)
= ψ(d̃β,µ( f , g)),

which gives

d̃β,µ(T f ,Tg) = maxt∈[0,1]

∣∣∣∣T f (t) − Tg(t)
2

∣∣∣∣ ≤ ψ(d̃β,µ( f , g)).

Hence,
α( f , g)d̃β,µ(T f ,Tg) ≤ ψ(d̃β,µ( f , g)).

Therefore, T satisfies the hypothesis of Theorem 3.7, which implies the integral equation (5.1) has
a unique solution as desired. �

6. Conclusions

In this article, we dealt with the notion of DCMTS, which was introduced by Mlaiki et al. [5].
Thus, we explored two types of contraction mappings in the complete DCMTS and established some
fixed-point theorems in this setting. Furthermore, we presented some examples and an application of
our result.
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