Research article

Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays

  • Received: 28 July 2022 Revised: 11 September 2022 Accepted: 20 September 2022 Published: 24 October 2022
  • MSC : 92B20, 34K20

  • Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays are investigated in the article. We derive the relationship between the fractional-order integrals of the state function with and without delays through the division of time interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing the sequence solution of the system function which converges to a continuous function uniformly with the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the conclusion by numerical simulation.

    Citation: Dan-Ning Xu, Zhi-Ying Li. Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays[J]. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081

    Related Papers:

  • Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays are investigated in the article. We derive the relationship between the fractional-order integrals of the state function with and without delays through the division of time interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing the sequence solution of the system function which converges to a continuous function uniformly with the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the conclusion by numerical simulation.



    加载中


    [1] A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel, On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl., 171 (1992), 301–320. https://doi.org/10.1016/0022-247X(92)90345-E doi: 10.1016/0022-247X(92)90345-E
    [2] S. Aizicovici, M. McKibben, S, Reich, Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, J. Nonlinear Anal.-Theor., 43 (2001), 233–251. https://doi.org/10.1016/S0362-546X(99)00192-3 doi: 10.1016/S0362-546X(99)00192-3
    [3] Y. Chen, J. J. Nieto, D. Oregan, Anti-periodic solutions for fully nonlinear first-order differential equations, J. Math. Comput. Model., 46 (2007), 1183–1190. https://doi.org/10.1016/j.mcm.2006.12.006 doi: 10.1016/j.mcm.2006.12.006
    [4] H. L. Chen, Anti-periodic wavelets, J. Comput. Math., 14 (1996), 32–39. https://doi.org/354ypepm40/160976
    [5] Y. Li, L. Huang, Anti-periodic solutions for a class of Liénard-type systems with continuously distributed delays, Nonlinear Anal.-Real, 10 (2009), 2127–2132. https://doi.org/10.1016/j.nonrwa.2008.03.020 doi: 10.1016/j.nonrwa.2008.03.020
    [6] P. Cui, Z. B. Li, Anti-periodic solutions for BAM-type Cohen-Grossberg neural networks with time delays, J. Nonlinear Sci. Appl., 10 (2017), 2171–2180. https://doi.org/10.22436/jnsa.010.04.69 doi: 10.22436/jnsa.010.04.69
    [7] Y. K. Li, J. L. Qin, B. Li, Existence and global exponential Stabilization of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects, J. Math. Method. Appl. Sci., 42 (2019), 5–23. https://doi.org/10.1002/mma.5318 doi: 10.1002/mma.5318
    [8] C. J. Xu, P. L. Li, Existence and exponential Stabilization of anti-periodic solutions for neutral BAM neural networks with time-varying delays in the leakage terms, J. Nonlinear Sci. Appl., 9 (2016), 1285–1305. http://dx.doi.org/10.22436/jnsa.009.03.52
    [9] X. Y. Fu, F. C. Kong, Global exponential Stabilization analysis of anti-periodic solutions of discontinuous bidirectional associative memory (BAM) neural networks with time-varying delays, Int. J. Nonlin. Sci. Num., 21 (2020), 807–820. https://doi.org/10.1515/ijnsns-2019-0220 doi: 10.1515/ijnsns-2019-0220
    [10] C. F. Xu, F. C. Kong, Global exponential Stabilization of anti-periodic solutions for discontinuous Cohen-Grossberg neural networks with time-varying delays, J. Exp. Theor. Artif. Intell., 33 (2021), 263–281. https://doi.org/10.1080/0952813X.2020.1737244 doi: 10.1080/0952813X.2020.1737244
    [11] B. S. Chen, J. J. Chen, Global asymptotically omega-periodicity of a fractional-order non-autonomous neural network, J. Neur. Network., 68 (2015), 78–88. https://doi.org/10.1016/j.neunet.2015.04.006 doi: 10.1016/j.neunet.2015.04.006
    [12] Y. Y. Hou, L. H. Dai, S-asymptotically $\omega $-periodic solutions of fractional-order complex-valued recurrent neural networks with delays, J. IEEE Access, 9 (2021), 37883–37893. https://doi.org/10.1109/ACCESS.2021.3063746 doi: 10.1109/ACCESS.2021.3063746
    [13] A. L. Wu, Z. G. Zeng, Boundedness, Mittag-Leffler stabilization and asymptotical omega-periodicity of fractional-order fuzzy neural networks, J. Neur. Network., 74 (2016), 73–84. https://doi.org/10.1016/j.neunet.2015.11.003 doi: 10.1016/j.neunet.2015.11.003
    [14] Y. K. Li, M. Huang, B. Li, Besicovitch almost periodic solutions for a fractional-order quaternion-valued neural network with discrete and distributed delays, J. Math. Method. Appl. Sci., 45 (2022), 4791–4808. https://doi.org/10.1002/mma.8070 doi: 10.1002/mma.8070
    [15] A. P. Wan, D. H. Sun, M. Zhao, H. Zhao, Mono-stabilization and multi-stabilization for almost-periodic solutions of fractional-order neural networks with unsaturated piecewise linear activation functions, IEEE T. Neur. Net. Lear. Syst., 31 (2020), 5138–5152. https://doi.org/10.1109/TNNLS.2020.2964030 doi: 10.1109/TNNLS.2020.2964030
    [16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional-order differential equations, Boston: Elsevier, 2006.
    [17] I. Podlubny, Fractional-order differential equations, New York: Academic Press, 1998.
    [18] Y. Gu, H. Wang, Y. Yu, Stabilization and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks, J. Neurocomput., 340 (2019), 270–280. https://doi.org/10.1016/j.neucom.2019.03.005 doi: 10.1016/j.neucom.2019.03.005
    [19] L. Ke, Exponential synchronization in inertial Cohen-Grossberg neural networks with time delays, J. Neurocomput., 465 (2021), 53–62. https://doi.org/10.1016/j.jfranklin.2019.07.027 doi: 10.1016/j.jfranklin.2019.07.027
    [20] Y. Q. Ke, C. F. Miao, Anti-periodic solutions of inertial neural networks with time delays, J. Neural Process. Lett., 45 (2017), 523–538. https://doi.org/10.1007/s11063-016-9540-z doi: 10.1007/s11063-016-9540-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1449) PDF downloads(67) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog