In this work, Hölder-Isçan inequality is used for the class of $ n $-times differentiable $ (s, m) $-convex functions. The outcomes are new Hermite-Hadamard type inequalities and modified integrals are estimated by better bounds. Special cases are deduced as the existing results from literature. Furthermore, some applications to arithmetic, geometric and logarithmic means are also presented.
Citation: Khuram Ali Khan, Shaista Ayaz, İmdat İşcan, Nehad Ali Shah, Wajaree Weera. Applications of Hölder-İşcan inequality for $ n $-times differentiable $ (s, m) $-convex functions[J]. AIMS Mathematics, 2023, 8(1): 1620-1635. doi: 10.3934/math.2023082
In this work, Hölder-Isçan inequality is used for the class of $ n $-times differentiable $ (s, m) $-convex functions. The outcomes are new Hermite-Hadamard type inequalities and modified integrals are estimated by better bounds. Special cases are deduced as the existing results from literature. Furthermore, some applications to arithmetic, geometric and logarithmic means are also presented.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequality and applications, Victoria University, Melbourne, 2000. |
[2] | D. Y. Hwang, Some inequalities for $n$-times differentiable mappings and applications, Kyungpook Math., 43 (2003), 335–343. |
[3] | İ. İşcan, Hermite-Hdarmard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[4] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012). https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438 |
[5] | P. Agarwal, M. Kadakal, İ. İşcan, Y. M. Chu, Better approaches for $n$-times differentiable convex functions, Mathematics, 8 (2020), 950. https://doi.org/10.3390/math8060950 doi: 10.3390/math8060950 |
[6] | B. G. Pachpatte, Mathemematical inequalities, Elsevier, Netherlands, 2005. |
[7] | İ. İşcan, New refinement for integral and sum forms of Hölder inequality, J. Inequal. Appl., 8 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5 |
[8] | S. Maden, H. Kadakal, M. Kadakal, İ. İmdat, Some new integral inequalities for $n$-times differentiable convex and concave functions, J. Nonlinear Sci. Appl., 10 (2017), 6141–6148. https://doi.org/10.22436/jnsa.010.12.01 doi: 10.22436/jnsa.010.12.01 |
[9] | H. Barsam, M. S. Ramezani, Y. Sayyari, On the new Hermite-Hadamard type inequalities for $s$-convex functions, Afr. Mat., 32 (2021), 1355–1367. https://doi.org/10.1007/s13370-021-00904-7 doi: 10.1007/s13370-021-00904-7 |
[10] | M. Z. Sarikaya, E. Set, M. E. Özdemir, Some new Hermite Hadamard type inequalities for cooridinated $m$-convex and $(\alpha, m)$-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229. |
[11] | S. P. Bai, S. H. Wang, F. Qi, Some Hermite-Hadamrd type for convex functions with applications to means, J. Inequal. Appl., 2012. |
[12] | P. Cerone, S. S. Dragomir, J. Roumeliotis, A new generalization of the trapezoid formula for $n$-time differentiable mappings and applications, Demonstr. Math., 33 (2000), 719–736. https://doi.org/10.1515/dema-2000-0404 doi: 10.1515/dema-2000-0404 |
[13] | W. D. Jiang, D. W. Niu, Y. Hua, F. Qi, Generalizations of Hermite-Hadamard inequality to $n$-times differentiable function which $s$-convex in second sense, Analysis, 32 (2012), 209–220. https://doi.org/10.1524/anly.2012.1161 doi: 10.1524/anly.2012.1161 |
[14] | H. Kadakal, New inequalities for strongly $r$-convex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/1219237 doi: 10.1155/2019/1219237 |
[15] | H. Kadakal, $(\alpha, m_{1}, m_{2})$-convexity and some inequalities of Hermite-Hadamard type, Commun. Fact. Sci. Univ. Ank. Ser. Math. Stat., 68 (2019), 2128–2142. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184 |
[16] | S. Özcan, Î. Îşcan, Some integral inequalitites for harmonically $(\alpha, s)$-convex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021 |
[17] | M. V. Cortez, Féjer type inequalities for $(s, m)$-convex functions in second sense, Appl. Math. Inform. Sci., 10 (2016), 1–8. https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021 |
[18] | S. B. Akbar, J. Pečarić, G. Farid, X. Qiang, Generalized fractional integral inequalities for exponentially $(s, m)$-convex functions, J. Inequal. Appl., 2020 (2020), 70. https://doi.org/10.1186/s13660-020-02335-7 doi: 10.1186/s13660-020-02335-7 |
[19] | N. Eftekhari, Some remarks on $(s, m)$-convexity in the second sense, J. Math. Inequal., 8 (2014), 489–495. https://doi.org/10.7153/jmi-08-36 doi: 10.7153/jmi-08-36 |
[20] | Y. C. Kwun, A. A. Shahid, W. Nazeer, S. I. Butt, M. A. Shin, Tricorns and multicorns in noor orbit with $s$-convexity, IEEE Access, 7 (2019), 95297–95304. https://doi.org/10.1109/ACCESS.2019.2928796 doi: 10.1109/ACCESS.2019.2928796 |
[21] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential $s$-convex functions, Turkish J. Sci., 5 (2020), 140–146. |
[22] | M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033 |
[23] | E. Set, New inequalities of Ostrowski typefor mapppings whose derivatives are $s$-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. https://doi.org/10.1016/j.camwa.2011.12.023 doi: 10.1016/j.camwa.2011.12.023 |
[24] | M. E. Özdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two $s$-convex functions on the coordinate, J. Inequal. Appl., 2012 (2012), 21. https://doi.org/10.1186/1029-242X-2012-21 doi: 10.1186/1029-242X-2012-21 |
[25] | M. E. Özdemir, Ç. Yildiz, A. O. Akdemir, E. Set, On some inequalities for $s$-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-333 doi: 10.1186/1029-242X-2013-333 |
[26] | Y. M. Chu, M. A. Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316. |
[27] | M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414–1430. https://doi.org/10.1515/math-2017-0121 doi: 10.1515/math-2017-0121 |
[28] | Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210 |
[29] | M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Hermite-Hadamard type inequalities via quantum calculus involving green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3 |
[30] | P. O. Mohammed, I. Brevik, A new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 1–11. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610 |
[31] | J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Mathematics, 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038 |
[32] | D. Zhao, M. A. Ali, A. Kashuri, H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differ. Equ., 2020 (2020), 137. https://doi.org/10.1186/s13662-020-02589-x doi: 10.1186/s13662-020-02589-x |
[33] | M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x |
[34] | M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued setting, J. Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083 |