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Abstract: Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks 

with time-varying delays are investigated in the article. We derive the relationship between the 

fractional-order integrals of the state function with and without delays through the division of time 

interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing 

the sequence solution of the system function which converges to a continuous function uniformly with 

the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic 

solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the 

conclusion by numerical simulation. 
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1. Introduction  

The stabilization and existence of anti-periodic solutions have major significance in dynamic 

behavior on nonlinear differential equations, which plays a key role in various physical phenomena, 

such as anti-periodic characteristics in vibration equations and so on [1–5]. As a special case of periodic 

solutions, many scholars have studied the existence and stabilization of anti-periodic solutions of 

several kinds of neural networks in recent years. The authors [6] studied the existence and stabilization 

of anti-periodic solutions for BAM Cohen-Grossberg neural networks. In [7] authors investigated the 
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existence and global exponential stabilization of anti-periodic solutions for quaternion numerical 

cellular neural networks with impulse effect. The existence and exponential stabilization of anti-

periodic solutions for BAM neural networks is studied in [8,9]. The authors [10] studied the global 

exponential stabilization of anti-periodic solutions for Cohen-Grossberg neural networks. All studies 

in [6–10] are integer-order models, however, the research on fractional-order neural networks has 

attracted attention and obtained important research results in recent years. 

The existence and stabilization of anti-periodic solutions are of great significance in the dynamic 

behavior of nonlinear differential equations, such as [1–5]. From previous data, there are only 

discussions on the asymptotic  -periodic solution, almost periodic solutions and s -asymptotic  -

periodic solutions for fractional-order neural networks (e.g., [11–15]), we haven’t found the existence 

and stabilization of anti-periodic solutions yet. We focus on the problem of the existence of anti-

periodic solutions and Mittag-Leffler stabilization for a class of fractional order neural networks in this 

paper, this is a new research topic, our characteristics mainly include three points:  

1) Deriving the relationship between fractional-order integrals of state functions with and without 

time delay through the division of time interval and the properties of fractional-order calculus;  

2) Constructing function sequence solution, and it uniformly converges to a continuous function 

with Arzela-Asoli theorem, then giving a sufficiency for the existence of anti-periodic solutions and 

Mittag-Leffler stabilization of the system, the results are new； 

3) Verifying the correctness of the theorems by numerical simulation instances. It provides a new 

criterion for dynamic system research.  

We consider fractional-order neural networks with time-varying delays: 

1 1

D ( ) ( ) ( ( )) ( ( ( ))) ( ), 1,2, , .                     (1)
n n

t i i i ij j j ij j j ij i

j j

x t x t a f x t b f x t t I t i n  
= =

= − + + − + =   

Where 0t  , tD  is Riemann-Liouville derivative with  -order, 0 1  ; ( )ix t  is the state of 

the i th neuron at time t ; 0i  ; ,ij ija b are connection weights of neurons; ( )jf   is an excitation 

function of the j th neuron; ( )iI t is an external input function of the i th neuron at time t ; ( )ij t  is 

a signal transmission delay between the i th neuron and the j th neuron, and ( ) 0ij t  . 

Given the initial conditions of the system (1): 

( ) ( ),  ( ) ( ),  0,  1,2, , .                                     (2)i i t i ix s s D x s s s i n  = = −   =  

Here 
1 , , 0

= sup { ( )}ij
i j n t

t 
  

, ( ), ( )i is s   are bounded continuous functions. 

The structure of this article is as follow. First a few preliminaries are given in Section 2. In Section 3, 

by the properties of fractional-order calculus, constructing function sequence solution, and the Arzela-

Asoli theorem, a sufficient case is derived for the existence of anti-periodic solutions and Mittag-

Leffler stabilization of the system. An illustrative example to show the effectiveness of the proposed 

theory in Section 4.  

2. Preliminaries 

Definition 1. [16] Define the q -order fractional-order integral of ( )f t  (Riemann-Liouville integral) as 
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0

11
( ) ( ) ( )d ,

( )

t
q q

t
t

D f t t r f r r
q

− −= −
   

where 
0 0t t   , q   is a positive real number, ( )    is a Gamma function, and 

1

0
( ) d , 0.r tr t e t r

+
− − =   

Definition 2. [16] Define the q -order fractional-order derivative of ( )f t  (Riemann-Liourille derivative) 

as 

0
1

1 d ( )
( ) ds,

( ) dt ( )

n
t

q

t n q nt

f s
D f t

n q t s − +
=
 − −  

where 
0 0t t  , 1 ,n q n n Z +−    , ( )   is a Gamma function. 

Definition 3. [17] A Mittag-Leffler function with parameter q is defined  

0

( ) ,
( 1)

k

q

k

z
E z

kq

+

=

=
 +

  

where e( ) 0R q   is the real part of q , z  is plural, ( )   is a Gamma function. 

Definition 4. Let T ( )X t   and T ( )X t   are the solutions of ( ) ( ), ( ) ( )i i t i ix s s D x s s = =   and 

( ) ( )i ix s s= , ( ) ( ),  0t i iD x s s s  = −   . If there exist 
1 0  , 

2 0  , T ( )X t  and T ( )X t  satisfy  

1 2

1( ) ( ) [ ( ) ( )] , 0qX t X t M E t t   −  − −  ， 

then the system (1) is Mittag-Leffler stabilization, where  
T T T

1 2 1 2 1 2( ) ( ( ), ( ), ( )) ,  ( ) ( ( ), ( ), ( )) ,  ( ) ( ( ), ( ), ( ))n n nX t x t x t x t X t x t x t x t t t t t   = = = , 

T

1 2( ) ( ( ), ( ), ( )) ,  ( ) 0, (0) 0.nt t t t M M     = −  =  ( )qE   is a Mittag-Leffler function with a  

parameter q . 

Lemma 1. [18] ( )x t is a continuously differentiable function on [0, ]( 0)   , then 

( ) ( )t t t

p q p qD D x t D x t− − += , 0 1, 1 ,q n p n n Z +  −    . 

Lemma 2. [19] ( )u t is a continuous function on [0, )+ , there exists 
1 0d   and 

2 0d  , such that 

1 2( ) ( ) ,    0,q

tu t d D u t d t− − +    then 
2 1( ) ( )q

qu t d E d t −  , where 0 1q   , ( )qE   is a Mittag-Leffler 

function with a parameter q . 

Lemma 3. [18] If ( )r t  is differentiable and ( )r t  is continuous, thus 

21
( ) ( ) ( ),  0< 1.

2

q q

t tD r t r t D r t q   

Definition 5. [20] For ( ) ( )u t C R  , if ( ) ( )u t u t+ = −   for t R  , thus ( )u t   is an anti-periodic 

function, where is a normal number. 

Assumptions used in this article:  

1H : ( )if t is bounded continuous excitation function and satisfies Lipschitz conditions, there exist 

0il  , 0if  such 
1 2 1 2 1 2( ) ( ) ,     ( ) ,     , ,    1,2, .i i i i if f l f t f R i n     −  −   =  

2H :  Excitation function ( )if t satisfies ( ) ( ),  ,  1,2, , .i if u f u u R i n= − −  =  

3H :  Input function ( )iI t satisfies ( ) ( ),  ( )i i i iI t I t I t I+ = −  , where 0,  0,  1,2, , .iI i n   =  
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4H :   Time-varying delays function ( )ij t   is bounded, and differentiable, and satisfy 

*0 ( ) 1,  0ij t t     ,  1,2, ,i n= . 

3. Main results 

Theorem 1. The solution of system (1) is bounded on [0, ](0 )T T  +  when 
1H  and 

3H  hold. 

Proof. There is ( ) sgn( ( )) ( )t tD g x g x D g x   for a continuous function ( )g x  and Definition 2. We 

get from (1): 

1 1

( ) ( ) + ( ( )) + ( ( ( ))) + ( )
n n

t i i i ij j j ij j j ij i

j j

D x t x t a f x t b f x t t I t  
= =

 − −   

1

( ) + ( ) + .                                                    (3)
n

i i ij ij j i

j

x t a b f I
=

 − +  

Combined with Lemma 1, it can be deduced from (3): 

1

( ) ( ) + [ ( ) + ]               
n

i i t i t ij ij j i

j

x t D x t D a b f I  − −

=

 − +  

1

= ( ) +[ ( ) + ]                                
( 1)

n

i t i ij ij j i

j

t
D x t a b f I






−

=

− +
 +

  

1

( ) [ ( ) + ] .                       
( 1)

n

i t i ij ij j i

j

T
D x t a b f I






−

=

 − + +
 +

  

From Lemma 2: 

1

[ ( ) ]

( ) ( ),  0,  1,2, , .
( 1)

n

ij ij j i

j

i i

a b f I T

x t E t t i n





 


=

+ +

 −  =
 +


 

That is the solution T

1 2( ) ( ( ), ( ), , ( ))nx t x t x t x t=  is bounded on 0 t T   + , where ( )E   is a  

Mittag-Leffler function with a parameter . 

Theorem 2. The solution of system (1) is Mittag-Leffler stabilization on [0, ]( )T T  + ，if 

*1
1 1

min{2 ( ) ( ) } 0,
1

n n
ji

i ij ij j ji i
i n

j j

b
a b l a l 

 
= =

= − + − + 
−

   

when 1H and
3H hold. 

Proof. Suppose * * * * T

1 2( ) ( ( ), ( ), , ( ))nx t x t x t x t= and T

1 2( ) ( ( ), ( ), , ( ))nx t x t x t x t=  are the solutions of
* * * *( ) ( ),  ( ) ( )i i t i ix s s D x s s = =  and ( ) ( ),  ( ) ( )i i t i ix s s D x s s = =  . Let *( ) ( ) ( )i i iy t x t x t= −  , combined 

formula (1): 

* *

1 1

( ) ( ) [ ( ( )) ( ( ))] [ ( ( ( ))) ( ( ( )))].  (4)
n n

t i i i ij j j j j ij j j ij j j ij

j j

D y t y t a f x t f x t b f x t t f x t t   
= =

= − + − + − − −   

We get 2( ) 2 ( ) ( )t i i t iD y t y t D y t   from Lemma 3, and from (4): 
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2 * *

1 1

2

1 1

2

( ) 2 ( ){ ( ) [ ( ( )) ( ( ))] [ ( ( ( ))) ( ( ( )))]}

             2 ( ) 2 ( ) [ ( ) ( ( )) ]

             2 ( )

n n

t i i i i ij j j j j ij j j ij j j ij

j j

n n

i i i ij j j ij j j ij

j j

i i i

D y t y t y t a f x t f x t b f x t t f x t t

y t y t a l y t b l y t t

y t a

   

 



= =

= =

 − + − + − − −

 − + + −

 − +

 

 

2 2 2 2

1 1

2 2 2

1 1 1

( ) ( ) ( ) ( ( ))

              =[ 2 ( + ) ] ( ) ( ) ( ( )).                                 (5)

n n

j j i j ij j i j ij

j j

n n n

i ij ij j i ij j j ij j j ij

j j j

l y t y t b l y t y t t

a b l y t a l y t b l y t t



 

= =

= = =

+ + + −

− + + + −

 

  

 

From (5): 

2 2 2

1 1 1 1 1 1

( ) [ 2 ( + ) + ]D ( ) D ( ( )).        (6)
n n n n n n

i i ij ij j ji i t i ji i t i ij

i i j j i j

y t a b l a l y t b l y t t  − −

= = = = = =

 − + + −      

( ) [ ( ),0]ij ijt t t −  −  when [0, ( )]ijt t . Let ( )iju s s= − , then 

2 1 2

0

1
( ( )) ( ) ( ( ))d

( )

t

t i ij i ijD y t t t s y s s s  


− −− = − −
 

1 2
( )

(0)

*
( )

1

* (0)

*

( ( )) ( )1
                          du

( ) 1 ( )

                          ( ( )) du
(1 ) ( )

( (0) ( ))
                          

ij

ij

ij

ij

t t ij i

ij

t t
i

ij

i ij ij

t u s y u

s

t u t

t t













 




 

  

−
−

−

−
−

−

− −
=
 −

 − −
− 

+ −
=





*(1 ) ( )



  − 

 

*

*
,                                                         (7)

(1 ) ( 1)

i T


 


−  +
 

where
* * 2

0

sup {( ( ) ( )) },  1,2, , .i i i
s

s s i n


  
−  

= − =  

( ) [0, )ijt t−  +  when [ ( ), )ijt t + . Let ( )iju s s= − , then 

2 1 2

0

1 2
( )

(0)

1 2

(

1
( ( )) ( ) ( ( ))d

( )

( ( )) ( )1
                          du

( ) 1 ( )

( ( )) ( )1
                           = [ du

( ) 1 ( )

ij

ij

ij

t

t i ij i ij

t t ij i

ij

ij i

ij

D y t t t s y s s s

t u s y u

s

t u s y u

s

 










 




 



 

− −

−
−

−

−

−

− = − −


− −
=
 −

− −

 −





1 2
0 ( )

0) 0

0 ( )
1 2 1 2

* (0) 0

*
2

*

( ( )) ( )
du]

1 ( )

1
                           [ ( ) ( )du ( ( )) ( )du]

(1 ) ( )

1
                          [ (

1 ( 1)

ij

ij

ij

t t ij i

ij

t t

i ij i

i
i i

t u s y u

s

u y u t u t y u

T
D y





 











 



 

−
−

−
− −

−

−

− −
+

−

 − + − −
− 

 +
−  +

 

 

)],                                                                       (8)t
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where
* * 2

0

sup {( ( ) ( )) },  1,2, , .i i i
s

s s i n


  
−  

= − =  

We obtain from (7) and (8):  

*
2 2

*

1
( ( )) [ ( )],  1,2, , .                (9)

1 ( 1)

i
t i ij i i

T
D y t t D y t i n


 


 

− −−  + =
−  +

 

Substitute the result of (9) into (6): 

*
2 2

* *
1 1 1 1 1 1

*
2

*1
1 1 1 1

( ) [ 2 ( + ) + ( ) ]D ( )
1 (1 ) ( 1)

             min[2 ( + ) ( ) ] D ( )
1

n n n n n n
ji i

i i ij ij j ji i t i ji i

i i j j i j

n n n n
ji i

i ij ij j ji i t i ji i
i n

j j i j

b T
y t a b l a l y t b l

b T
a b l a l y t b l









  






−

= = = = = =

−

 
= = = =

 − + + +
− −  +

 − − − + +
−

    

    *
1

.(10)
(1 ) ( 1)

n

i



 = −  +


 

Combined with Lemma 2, it can be deduced from (10):  

* * 2 *

1

( ) ( ) ( ),  0,                                      (11)
n

i

x x x x M E t t

  
=

− = −  − −   

where 
*

*

*
1 1

( )
(1 ) ( 1)

n n
i

ji i

i j

T
M b l


 

 = =

− =
−  +

 , 

1
1 1

min{2 ( ) ( ) } 0.
1 *

n n
ji

i ij ij j ji i
i n

j j

b
a b l a l 

 
= =

= − + − + 
−

   Obviously ( *) 0,  M  −  and (0) 0M = , 

thus the solution of system (1) is Mittag-Leffler stabilization from Definition 4. 

Theorem 3. System (1) has an anti-periodic solution when the Theorem 2 and
2H hold, and the 

solution is Mittag-Leffler stabilization.  

Proof. For a positive integer k and a normal number from
2H and 

3H , we obtain from (1): 

1 1

1

1

[( 1) ( ( 1) )] ( 1) [ ( ( 1) ) ( ( ( 1) ))

                                              ( ( ( 1) ( ))) ( ( 1) )]

                                   

n
k k

t i i i ij j j

j

n

ij j j ij i

j

D x t k x t k a f x t k

b f x t k t I t k

    

  

+ +

=

=

− + + = − − + + + + +

+ + + − + + +





1 1

1

1

1

        = ( 1) ( ( 1) ) (( 1) ( ( 1) ))

                                              (( 1) ( ( 1) ( ))) ( ),  1,2, , .              (12)

n
k k

i i ij j j

j

n
k

ij j j ij i

j

x t k a f x t k

b f x t k t I t i n

  

 

+ +

=

+

=

− − + + + − + +

+ − + + − + =





 

So 1( 1) ( ( 1) )k

ix t k +− + +  is the solution of system (1) for a positive integer k . ( )x t  is bounded 

from Theorem 1, then there exists a positive constant N such that: 

1( 1) ( ( 1) ) [ ( ( 1) ) ], 1, 2, , .k

ix t k NE t k i n

  +− + +  − + + =  

Because 0 ( ( ) ) 1, 0E t 

   −   , so the sequence 1{( 1) ( )}k

ix t k+− +  is equicontinuous and bounded 

uniformly. Reapplication Arzela-Ascoli theorem {( 1) ( )}k

i k Nx t k − +   converges to a continuous 

function *( )ix t   uniformly on any compact set in[0, ]+   by selecting a subsequence { }k Nk 
 , that is 
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*lim ( 1) ( ) ( ),  1,2, , .k

i i
k

x t k x t i n
→+

− + = =  

On the other hand, owing to
* 1 *( ) lim ( 1) ( ) lim ( 1) ( ( 1) ) ( ),  1,2, , .k k

i i i i
k k

x t x t k x t k x t i n   +

→+ →+
+ = − + + = − − + + = − =  

So *( )x t  is  -anti-periodic function. Owing ( 1) ( )k

ix t k− +  is the solution of system (1) for any 

k N , we obtain from (1): 

1

1

[( 1) ( )] ( 1) ( ) (( 1) ( ))

                                   (( 1) ( ( ))) ( ),    1,2, , .

n
k k k

t i i i ij j j

j

n
k

ij j j ij i

j

D x t k x t k a f x t k

b f x t k t I t i n

    

 

=

=

− + = − − + + − +

+ − + − + =




 

We can continue to get when ( )if   is continuous, then 

* * *

1 1

lim [( 1) ( )] ( ) ( ( )) ( ( ( ))) ( ),    1,2, , .
n n

k

t i i i ij j j ij j j ij i
k

j j

D x t k x t a f x t b f x t k t I t i n    
→+

= =

− + = − + + + − + =   

So *( )x t is an anti-periodic solution of system (1). For any ( )x t , the inequality holds from (11): 

* * *

1

( ) ( ) ( ) ( ) ( ) ( ),  0,
n

i i

i

x t x t x t x t M E t t

  
=

− = −  − −   

so *( )x t is an anti-periodic solution and Mittag-Leffler stabilization. 

Remark: The stabilization and existence of anti-periodic solutions of nonlinear differential equations 

are of great significance in dynamic behavior, which plays a key role in physical phenomena [1–5]. 

The model of integer- order neural network system is a nonlinear differential equation, and fractional-

order neural network system is a generalization of integer-order neural network system, so fractional-

order neural network system is also a model of nonlinear differential equation generalization. From 

previous data, there are only discussions on the boundedness and asymptotic stabilization of almost 

periodic solution and   -periodic solution for fractional-order neural networks (e.g., [11–15]), we 

have not seen the results of authors exploring the dynamic behavior of the anti-periodic solution of a 

system. In the article, we mainly give the sufficient conditions for the existence of anti-periodic 

solutions and Mittag-Leffler stabilization of fractional order neural network systems. The results are 

new. This provides a new basis to further explore the dynamic properties of a system in theoretical 

research and practical application. 

4. Numerical simulation 

We consider fractional-order neural networks with time-varying delays:  

2 2

1 1

D ( ) ( ) ( ( )) ( ( ( ))) ( ),  1,2.                (13)t i i i ij j j ij j j ij i

j j

x t x t a f x t b f x t t I t i  
= =

= − + + − + =   

We get 0.85 =  , 1 21.85,  1.9 = =  , 11

1
,

16
a =   12

1
,

32
a =   21

1
,

16
a = −   22

1
,

32
a = −   11

1
,

16
b = −  

12

1
,

32
b = 21

1
,

16
b = 22

1
,

32
b = −   

1 1
( ) ,

50

i i

i

x x
f x

+ − −
=   

cos(8 )
( ) ,

150
i

t
I t =   

2
( ) ,

3

t

ij

e
t

−−
=   therefore 



1617 

AIMS Mathematics  Volume 8, Issue 1, 1610–1619. 

( ) ( ),  
8

i iI t I t


+ = −
1 1

( ) ( ),  1,2.
50

i i

i i

x x
f x f x i

+ − −
− = − = − =  

Let 
1

,
25

il =
1

25
if = , 

1

150
iI = , 

* 1

3
 = , 

8


 = . 

By calculating we have: 
2 2

*1 2
1 1

min{2 ( ) ( ) } 2.8884375 0
1

ji

i ij ij j ji i
i

j j

b
a b l a l 

 
= =

= − + − + = 
−

   , 

so Theorem 3 holds, the system (13) has a 
8


-anti-periodic solution with Mittag-Leffler stabilization. 

On the other hand, giving the transient change of 
1 1( ( ), ( ))x t y t  and 

2 2( ( ), ( ))x t y t  for system (13) 

by numerical simulation, as shown in the figures below (see Figures 1 and 2).  

 

Figure 1. Transient change of 
1 1( ( ), ( ))x t y t . 

 

Figure 2. Transient change of 2 2( ( ), ( ))x t y t . 

We gain a 
8


-anti-periodic solution from the figures, it is consistent with the conclusion of theorems. 
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5. Conclusions 

We study the dynamic behavior of fractional-order neural networks with time-varying delays in 

the article. Frist deriving the relationship between fractional-order integrals of state functions with and 

without time delay through the division of time interval and the properties of fractional-order calculus, 

the research method is innovative. Moreover, constructing the sequence solution of the system function 

which converges to a continuous function uniformly with the Arzela-Asoli theorem. In addition, giving 

the sufficient conditions the Mittag-Leffler stabilization, boundedness, and the existence of anti-

periodic solutions for systems. Finally, the conclusion is feasible by a numerical simulation. Similarly, 

we can use the theoretical basis of this article to study the Mittag-Leffler stabilization of anti-periodic 

solutions of fractional-order Cohen-Grossberg neural networks and inertial Cohen-Grossberg neural 

networks, and so on. 
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