AIMS Mathematics, 8(1): 1610-1619.
AIMS Mathematics DOI: 10.3934/math.2023081

Received: 28 July 2022

Revised: 11 September 2022

Accepted: 20 September 2022

Published: 24 October 2022
http://www.aimspress.com/journal/Math

Research article

Mittag-Leffler stabilization of anti-periodic solutions for fractional-

order neural networks with time-varying delays

Dan-Ning Xu and Zhi-Ying Li*

The Fundamental Education Department of Yuanpei College, Shaoxing University, Shaoxing 312000,
China

* Correspondence: Email: 1401509674(@qq.com.

Abstract: Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks
with time-varying delays are investigated in the article. We derive the relationship between the
fractional-order integrals of the state function with and without delays through the division of time
interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing
the sequence solution of the system function which converges to a continuous function uniformly with
the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic
solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the
conclusion by numerical simulation.
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1. Introduction

The stabilization and existence of anti-periodic solutions have major significance in dynamic
behavior on nonlinear differential equations, which plays a key role in various physical phenomena,
such as anti-periodic characteristics in vibration equations and so on [ 1-5]. As a special case of periodic
solutions, many scholars have studied the existence and stabilization of anti-periodic solutions of
several kinds of neural networks in recent years. The authors [6] studied the existence and stabilization
of anti-periodic solutions for BAM Cohen-Grossberg neural networks. In [7] authors investigated the
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existence and global exponential stabilization of anti-periodic solutions for quaternion numerical
cellular neural networks with impulse effect. The existence and exponential stabilization of anti-
periodic solutions for BAM neural networks is studied in [8,9]. The authors [10] studied the global
exponential stabilization of anti-periodic solutions for Cohen-Grossberg neural networks. All studies
in [6-10] are integer-order models, however, the research on fractional-order neural networks has
attracted attention and obtained important research results in recent years.

The existence and stabilization of anti-periodic solutions are of great significance in the dynamic
behavior of nonlinear differential equations, such as [1-5]. From previous data, there are only
discussions on the asymptotic @ -periodic solution, almost periodic solutions and S -asymptotic @ -
periodic solutions for fractional-order neural networks (e.g., [11-15]), we haven’t found the existence
and stabilization of anti-periodic solutions yet. We focus on the problem of the existence of anti-
periodic solutions and Mittag-Leffler stabilization for a class of fractional order neural networks in this
paper, this is a new research topic, our characteristics mainly include three points:

1) Deriving the relationship between fractional-order integrals of state functions with and without
time delay through the division of time interval and the properties of fractional-order calculus;

2) Constructing function sequence solution, and it uniformly converges to a continuous function
with Arzela-Asoli theorem, then giving a sufficiency for the existence of anti-periodic solutions and
Mittag-Leffler stabilization of the system, the results are new;

3) Verifying the correctness of the theorems by numerical simulation instances. It provides a new
criterion for dynamic system research.

We consider fractional-order neural networks with time-varying delays:

DIX(0) =A% 0+ D8, T, 06 )+ 20,0, (=7, O) + 1,01 =121 &)

Where t>0, D is Riemann-Liouville derivative with « -order, 0<a <1; x (t) is the state of
the ith neuron at time t; £ >0; a;,b;are connection weights of neurons; f,(-) is an excitation
function of the j th neuron; I, (t)is an external input function of the ith neuron at time t; 7;(t) is
a signal transmission delay between the ith neuron and the j th neuron, and 7;(t) > 0.

Given the initial conditions of the system (1):
X(5) =@, (5), DI (8)=w;(s), ~r<5<0, i=12,--,n. 2)

Here 7= sup {r;()}, @(s),¥;(s) are bounded continuous functions.

1<i, j<n, t>0

The structure of this article is as follow. First a few preliminaries are given in Section 2. In Section 3,
by the properties of fractional-order calculus, constructing function sequence solution, and the Arzela-
Asoli theorem, a sufficient case is derived for the existence of anti-periodic solutions and Mittag-
Leftler stabilization of the system. An illustrative example to show the effectiveness of the proposed
theory in Section 4.

2. Preliminaries

Definition 1. [16] Define the q -order fractional-order integral of f (t) (Riemann-Liouville integral) as
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D f (1) = % [ t (t—r)f (r)dr,

where t>t, >0, g is a positive real number, I'() is a Gamma function, and
()= Io+wtr‘le“dt, r>0.

Definition 2. [16] Define the q -order fractional-order derivative of f (t) (Riemann-Liourille derivative)
as

“ _ 1 d e f(9)
Dt f (t) - F(n _q) dtn -[fo (t _S)q—ml !

where t>t, >0, n-1<q<nneZ", I'() isaGamma function.
Definition 3. [17] A Mittag-Leffler function with parameter g is defined

+0 Zk
5 D=2y

where Re(q) >0 isthereal partof q, z isplural, I'() is a Gamma function.
Definition 4. Let X'(t) and X'(t) are the solutions of X (S)=¢/(s),Dx(s)=w,(s) and

X(s)=@(s), DX (s)=w.(s), —r<s<0.Ifthereexist p, >0, p,>0, X'(t) and XT(t) satisfy

[X®-X©] <M (0-2)E, (o)1 120,

then the system (1) is Mittag-Leffler stabilization, where

X (1) = (4(0), % (), %, ()T, X () = (%), %), %, (), o) =(@ (1), 9, (1), - @,(D))7,

o) =(@,t),o,(t), @, ()", M(p—p)>0,M(0) =0. E,() is a Mittag-Leffler function with a
parameter (.

Lemma 1. [18] X(t)is a continuously differentiable function on [0,5](5 > 0), then

D, "Dix(t) =D;Px(t), 0<g<Ln-1<p<nneZ’.

Lemma 2. [19] u(t)is a continuous function on [0,+c0), there exists d, >0 and d, >0, such that
ut)<-d,Du(t)+d,, t>0, then u(t)<d,E (-dt?), where0<q<1, E,()is a Mittag-Leffler
function with a parameter (.

Lemma 3. [18] If r(t) is differentiable and r'(t) is continuous, thus

%Dﬁrz(t) <r(t)DIr(t), 0<q <1.

Definition 5. [20] For u(t)eC(R), if u(t+m)=-u(t) for teR, thus u(t) is an anti-periodic
function, where @ is a normal number.

Assumptions used in this article:

H, : f;(t)is bounded continuous excitation function and satisfies Lipschitz conditions, there exist

Ii>09 f_i>Osuch |fi(§l)_fi(§2)|£|i|§l_§2|1 |fi(t)|£f_i, flafzeR, i=12,--n.
H, : Excitation function f, (t)satisfies f,(u)=—f.(-u), ueR, i=12,---,n,
H,: Input function I, (t) satisfies I, (t + @) =—1,(t), |I,(t)|<1,, wherew >0, I, 20, i=12,---,n.
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H,: Time-varying delays function 7;(t) is bounded, and differentiable, and satisfy
Oétij(t)£r*<1, t>0,i=12,--,n

3. Main results

Theorem 1. The solution of system (1) is bounded on [0,T]J(0<T <+o0) when H, and H, hold.
Proof. There is D |g(x)| <sgn(g(x))Dg(x) for a continuous function g(x) and Definition 2. We

get from (1):
DE (0] <~ % O+ X, || £, 06, @)+ 2oy |, 0 (=7, )] #1,00)
<—AIX O+ (3 +0,) T, #T 3

Combined with Lemma 1, it can be deduced from (3):

% 0] <~ [x 0] +D;“L3 (3] +[o, T, +T.

- D |x<t>|+[Z<\ ay|+[p, i +T;

F( +1)
Ta
<-AD* IX(t)|+[Z(\ SR s
From Lemma 2:
[Zn:(‘aij‘Jr‘bij D +1ITe
|x ()] <= E (-ft%), t>0,i=12,--,n

I'a+1)

That is the solution X(t) = (,(t), X, (t),---, X, (t))" is bounded on0<t<T <+o0, where E (-) isa

Mittag-Leffler function with a parameter « .
Theorem 2. The solution of system (1) is Mittag-Leffler stabilization on [0, T](T <+»), if

=min{2/3 — Z(‘a“Mbu‘)l —Z(\ J,\+ b ‘*) 1}>0,

1<i<n

when H,and H; hold.
Proof. Suppose X (t) = (X, (1), X, (t),---, X (t)) and X(t) = (X, (t), X, (t),---,X (t))" are the solutions of
X ()=, (s), D{'x (s) =; (s) and x,(5) = %, (S), D%, (s) =w,(s) . Lety, (t) X (t) = (t) , combined

formula (1):
DIy (t) =-By:(t)+ Zn_:ai,- [f;0;0)— f, (G O+ ibij[f [ (X (=7 () — F,0G =7, (O] (4)

We get D y?(t) < 2y, (t)Dy,(t) from Lemma 3, and from (4):
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D Yi2 ) <2y,(O){-By; )+ i_ q; [ fj (Xj (1) - fj (Xj )]+ ibij [ fj (Xj (t- Tij 1)) - fj (X: (t- Tij ON

s—Zﬂiyf(t)+2|yi<t)|[i\ai,-\l,-\yj(t)\+%\bi,-\lj\y,—(t—rij(t»\]
s—Zﬁiyf(t)+jZn_;,\ai,-\l,-\yf(t)+yf(t)\+§\bu\l,-\yf(t)+yf(t—ri,-<t>)\
=[-28 +g(‘aﬂ‘+‘bﬂ‘)lj]yf(t)+g‘aij‘ljyf(t)+Z‘bij‘ljyf(t—rij(t)).
From (5):
Zy (t)<Z[ 253 +Z(\ a[+[b; )1 +Z‘a”‘l]D‘“ 2(t)+22\b,,\|0-“y,2(t 7, (1)).
t—z,(t) e[-7,(1),0] when te[0,z;(t)]. Let u=s—7,(s), then

Dy (t—7, (1) = —— [[ (t=5)“ Y2 (s~ 7, (6))ds

[(a) -0
1 J‘ 7 (1) (t u- TU (S))a 1y|2 (U)
F(a) % (0) 1-7;(s)

¢i t—7; (t) e
- (-7 (a) J:ri,- o (U @) du

_ §9i* (t+ Tij (0) - Tij )N
(- (@)

AN
T (1-)(a+))’
where q)l* = sup {(Q*(S) —& (s))z}! i =12,---,n

t—7;(t) €[0,+00) when te[r;(t),+0). Letu=s—7;(s), then

DL Y2 (=1, () = || (t=5)"*y2(s — 7, (s))ds

I'(a) 70
1 I G (t-u- T.,(S))“_ly.z(u)
F(a) 7 (0) 1-7;(s)

_ 1 [J-O (t_u_fij(é))a1yi2(u)du+'|'t—fu(t)(t_u_fij(.s))alYiZ(U)du
INa) 7@ 1-7;(s) 0 1-7;(s)
WU o YR @ [ -u -7 ) yE )]

1 AN —a\,2
<l F DOl

(5)

(6)

()

(8)
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where Q)I* = Sup {(Q*(S) — ¢ (s))z}! [ :1’ 2’ ooy

—-7<5<0

We obtain from (7) and (8):

T “ 2 .
V-7, (®) < = [F((” 5D i=L120n ©)
Substitute the result of (9) into (6):
n , n n n ‘bji‘ ¢i*Ta
iZ:ljyi (t)SiZ:l:[—Zﬂi +Z::qa”Mbij\)|j+z(\aji\+l_r*)li]o (t)+z_l:§‘b"‘ AT T
‘ " —ay,2 gDi*Ta
S—rJEILQ[Zﬂ Z(‘ Ij‘+‘blj‘)| _Z(‘ jl‘+ J )I ]ZD (t)+21§‘ JI‘ T*)r(a-i-l)(lO)
Combined with Lemma 2, it can be deduced from (10):
[x—x =2 (x=X) <M(p-¢")E,(-nt"), t>0, (11)
where M(p—-9¢) = ZZ‘ ‘ (/)I*T“
ST - (a+1)

=min{23 — Z(\ 3 |+[by 1, —Z(\ l,\+ b ‘ )I}>0. Obviously M(p—¢*)20, and M(0)=0,

I<i<n

thus the solutlon of system (1) is Mlttag—Lefﬂer stabilization from Definition 4.
Theorem 3. System (1) has an anti-periodic solution when the Theorem 2 and H, hold, and the

solution is Mittag-Leffler stabilization.
Proof. For a positive integer K and a normal number @ fromH, and H,, we obtain from (1):

DA[(-D)“* x (t+ (K +D )] = (1) [~ ﬁx,(t+(k+1)a))+2a (X (t+(k+D)w))

+Zn: by f;(x;(t+(k+Do—7; (1) + I, (t + (k + ) w)]
=— B (=) " x (t+(k +1)a))+Zn:aij f (-1 k+1xj(t+ (k+Dw))
+Zn:bij fj((—l)k”xj(t+(k +Do-7; (1) +1;(1), i=12,---,n. (12)

So (-1)*"'x (t+(k+1w) is the solution of system (1) for a positive integer K. x(t) is bounded

from Theorem 1, then there exists a positive constant N such that:

(D% (t+(k+Do)| < NE,[-n(t+ (K +D@)“], i =1,2,--,n

Because 0<E_(—(At)*)<1,4>0,so the sequence {(—1)""'x (t+kw)} is equicontinuous and bounded
uniformly. Reapplication Arzela-Ascoli theorem {(~1)“x (t+kw)}., converges to a continuous

function X (t) uniformly on any compact set in[0,+] by selecting a subsequence {kw},_, , that is

AIMS Mathematics Volume 8, Issue 1, 1610-1619.
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lim (=2)*x, (t +keo) =X (1), 1=1.2,---,n.

On the other hand, owing to
X (t+o) = kIim (D)X (t+ o+ ko) = —klim )" x (t+ (K +Dw) =X (t), i=1,2,---,n.

SoX'(t) is w-anti-periodic function. Owing (—1)“X (t+Ke) is the solution of system (1) for any

k € N, we obtain from (1):

DI[(—1)* x. (t + k)] = =B (<1)* x. (t + k) + iai,- f, (=D, (t + ko))

ij

+Zn:b.. f; ((—1)kxj(t+ ko—7; (1) +1;(t), 1=12,--,n.
i1
We can continue to get when f(-) is continuous, then
lim DF[(-D)" x; (t+ka)] = - (1) +jzn_;aij f, (X (t)) +Jzn_;bij f,OGt+ko—7, (1) + 1), =12
So X" (t) is an anti-periodic solution of system (1). For any X(t), the inequality holds from (11):
[x@)-x©)]= z\x )X O <M(p-¢)E, (-7t°), t>0,

so X (t)is an anti-periodic solution and Mittag-Leffler stabilization.

Remark: The stabilization and existence of anti-periodic solutions of nonlinear differential equations
are of great significance in dynamic behavior, which plays a key role in physical phenomena [1-5].
The model of integer- order neural network system is a nonlinear differential equation, and fractional-
order neural network system is a generalization of integer-order neural network system, so fractional-
order neural network system is also a model of nonlinear differential equation generalization. From
previous data, there are only discussions on the boundedness and asymptotic stabilization of almost
periodic solution and @ -periodic solution for fractional-order neural networks (e.g., [11-15]), we
have not seen the results of authors exploring the dynamic behavior of the anti-periodic solution of a
system. In the article, we mainly give the sufficient conditions for the existence of anti-periodic
solutions and Mittag-Leffler stabilization of fractional order neural network systems. The results are
new. This provides a new basis to further explore the dynamic properties of a system in theoretical
research and practical application.

4. Numerical simulation

We consider fractional-order neural networks with time-varying delays:

2 2
DX (1) =— A% (0 + 2, £,(x, ) + Y b, £, (x, (t—7, (O) + 1,(1), =12, (13)
=l i1
1 1 1 1 1
We get a=0.85, 5 =1.85, £, =1.9,a11=E, a12=3—2, aZl:_E’ a22:—3—2, bn:_ﬁ’
1 1 1 |x +1—|x -1 cos(8t) 2-¢"
b12 :3—2, b21 :E, b22 :—3—2, fi(X) :T, Il(t) :W, Tij (t) = 3 y therefore

AIMS Mathematics Volume 8, Issue 1, 1610-1619.
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TN . __|xi+]4—|xi—]4__ P
L+ D) =10, f,()= o =00, =12

Let l=—, f=—, I=—, 7 =l, w==
3 8

oy ) 1.}=2.8884375> 0
1-777" ' ’

By calculating we have: n=min{24, —Zzl(‘aij‘Jr‘bij ‘) I —ZZ:(‘ajiH
=1 j=1

1<i<2

so Theorem 3 holds, the system (13) has a %-anti-periodic solution with Mittag-Leffler stabilization.

On the other hand, giving the transient change of (x,(t), y,(t)) and (x,(t), Y, (t)) forsystem (13)

by numerical simulation, as shown in the figures below (see Figures 1 and 2).

3 T T T T
25 —x,(0)=1.35
2 —,(0)=0.65
1.54 R
e 4 i
>
=. 05
>
0
05
&4
15 1 1 1 1
0 0.5 1 15 2 25 3 35 4

Figure 1. Transient change of (x(t), y,(t)) .

Figure 2. Transient change of (X, (t), Y, (t)).
We gain a g -anti-periodic solution from the figures, it is consistent with the conclusion of theorems.

AIMS Mathematics Volume 8, Issue 1, 1610-1619.
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5. Conclusions

We study the dynamic behavior of fractional-order neural networks with time-varying delays in
the article. Frist deriving the relationship between fractional-order integrals of state functions with and
without time delay through the division of time interval and the properties of fractional-order calculus,
the research method is innovative. Moreover, constructing the sequence solution of the system function
which converges to a continuous function uniformly with the Arzela-Asoli theorem. In addition, giving
the sufficient conditions the Mittag-Leffler stabilization, boundedness, and the existence of anti-
periodic solutions for systems. Finally, the conclusion is feasible by a numerical simulation. Similarly,
we can use the theoretical basis of this article to study the Mittag-Leffler stabilization of anti-periodic
solutions of fractional-order Cohen-Grossberg neural networks and inertial Cohen-Grossberg neural
networks, and so on.
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