This work is concerned with the study of the existing solution for the fractional $ (p, q) $-difference equation under first order $ (p, q) $-difference boundary conditions in generalized metric space. To achieve the solution, we combine some contraction techniques in fixed point theory with the numerical techniques of the Lipschitz matrix and vector norms. To do this, we first associate a matrix to a desired boundary value problem. Then we present sufficient conditions for the convergence of this matrix to zero. Also, we design some algorithms to use the computer for calculate the eigenvalues of such matrices and different values of $ (p, q) $-Gamma function. Finally, by presenting two numerical examples, we examine the performance and correctness of the proposed method. Some tables and figures are provided to better understand the issues.
Citation: Abdellatif Boutiara, Jehad Alzabut, Mehran Ghaderi, Shahram Rezapour. On a coupled system of fractional $ (p, q) $-differential equation with Lipschitzian matrix in generalized metric space[J]. AIMS Mathematics, 2023, 8(1): 1566-1591. doi: 10.3934/math.2023079
This work is concerned with the study of the existing solution for the fractional $ (p, q) $-difference equation under first order $ (p, q) $-difference boundary conditions in generalized metric space. To achieve the solution, we combine some contraction techniques in fixed point theory with the numerical techniques of the Lipschitz matrix and vector norms. To do this, we first associate a matrix to a desired boundary value problem. Then we present sufficient conditions for the convergence of this matrix to zero. Also, we design some algorithms to use the computer for calculate the eigenvalues of such matrices and different values of $ (p, q) $-Gamma function. Finally, by presenting two numerical examples, we examine the performance and correctness of the proposed method. Some tables and figures are provided to better understand the issues.
[1] | S. Bhalekar, J. Patade, Series solution of the pantograph equation and its properties, Fractal Fract., 1 (2017), 16. https://doi.org/10.3390/fractalfract1010016 doi: 10.3390/fractalfract1010016 |
[2] | L. Podlubny, Fractional differential equations, Academic Press, 1999. |
[3] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[4] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[5] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[6] | A. Din, Y. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Solitons Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839 |
[7] | A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc |
[8] | A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0 |
[9] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[10] | A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Solitons Fract., 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286 |
[11] | M. Arfan, M. M. A. Lashin, P. Sunthrayuth, K. Shah, A. Ullah, K. Iskakova, et al., On nonlinear dynamics of COVID-19 disease model corresponding to nonsingular fractional order derivative, Med. Biol. Eng. Comput., 60 (2022), 3169–3185. https://doi.org/10.1007/s11517-022-02661-6 doi: 10.1007/s11517-022-02661-6 |
[12] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[13] | J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 5. https://doi.org/10.1186/1687-2770-2013-5 doi: 10.1186/1687-2770-2013-5 |
[14] | H. Aydi, M. Jleli, B. Samet, On positive solutions for a fractional thermostat model with a convex–concave source term via $\psi$-Caputo fractional derivative, Mediterr. J. Math., 17 (2020), 1–15. https://doi.org/10.1007/s00009-019-1450-7 doi: 10.1007/s00009-019-1450-7 |
[15] | M. Fei, G. Zhang, N. Wang, C. Huang, A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations, Adv. Differ. Equ., 2020 (2020), 1–23. https://doi.org/10.1186/s13662-020-03017-w doi: 10.1186/s13662-020-03017-w |
[16] | J. Lee, K. Jae-Myoung, K. Yun-Ho, A. Scapellato, On multiple solutions to a nonlocal fractional $p$-Laplacian problem with concave–convex nonlinearities, Adv. Contin. Discrete Models, 2022 (2022), 14. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6 |
[17] | Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, S. Rezapour, On a partial fractional hybrid version of generalized Sturm–Liouville–Langevin equation, Fractal Frac., 2022 (2022), 269. https://doi.org/10.3390/fractalfract6050269 doi: 10.3390/fractalfract6050269 |
[18] | M. Rivero, J. Trujillo, M. Velasco, A fractional approach to the Sturm-Liouville problem, Cent. Eur. J. Phys., 11 (2013), 1246–1254. https://doi.org/10.2478/s11534-013-0216-2 doi: 10.2478/s11534-013-0216-2 |
[19] | M. Klimek, O. P. Agrawal, Fractional Sturm–Liouville problem, Comput. Math. Appl., 66 (2013), 795–812. https://doi.org/10.1016/j.camwa.2012.12.011 doi: 10.1016/j.camwa.2012.12.011 |
[20] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70 |
[21] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[22] | H. Alrabaiah, G. Ali, A. Ali, K. Shah, T. Abdeljawad, On existence and stability results for pantograph fractional boundary value problems, Fractals, 30 (2022), 2240231. https://doi.org/10.1142/S0218348X22402319 doi: 10.1142/S0218348X22402319 |
[23] | S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. https://doi.org/10.1016/j.physleta.2008.08.045 doi: 10.1016/j.physleta.2008.08.045 |
[24] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. R. World Appl., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052 |
[25] | A. H. Bhrawy, M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Bound. Value Probl., 2012 (2012), 62. https://doi.org/10.1186/1687-2770-2012-62 doi: 10.1186/1687-2770-2012-62 |
[26] | C. Zhai, P. Li, H. Li, Single upper-solution or lower-solution method for Langevin equations with two fractional orders, Adv. Differ. Equ., 2018 (2018), 360. https://doi.org/10.1186/s13662-018-1837-y doi: 10.1186/s13662-018-1837-y |
[27] | M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, Adv. Frac. Funct. Anal., 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213 |
[28] | A. Benkerrouche, M. S. Souid, E. Karapınar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Methods Appl. Sci., 2022 (2022), 8306. https://doi.org/10.1002/mma.8306 doi: 10.1002/mma.8306 |
[29] | M. Benchohra, F. Bouazzaoui, E. Karapinar, A. Salim, Controllability of second order functional random differential equations with delay, Mathematics, 10 (2022), 1120. https://doi.org/10.3390/math10071120 doi: 10.3390/math10071120 |
[30] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical model, World Scientific Publishing Company, 2010. |
[31] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[32] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, 2011. |
[33] | M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 2022 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203 |
[34] | S. Abbas, D. Baleanu, M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Differ. Equ., 2012 (2012), 62. https://doi.org/10.1186/1687-1847-2012-62 doi: 10.1186/1687-1847-2012-62 |
[35] | S. Abbas, M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative, Stud. Univ. Babes-Bolyai Math., 57 (2012), 469–479. |
[36] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the $p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 1–18. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[37] | M. Benchohra, M. Hellal, Perturbed partial functional fractional order differential equations with infnite delay, J. Adv. Res. Dyn. Control Syst, 5 (2013), 1–15. |
[38] | D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020), 71. https://doi.org/10.1186/s13662-020-02544-w doi: 10.1186/s13662-020-02544-w |
[39] | S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511 |
[40] | F. H. Jackson, $q$-difference equation, Am. J. Mathe., 32 (1910), 305–314. https://doi.org/10.2307/2370183 |
[41] | F. H. Jackson, On $q$-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203. |
[42] | V. Kac, P. Cheung, Quantum calculus, Springer, 2002. |
[43] | W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469 |
[44] | R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060 |
[45] | M. El-Shahed, F. M. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional $q$-difference equation, Int. Scholarly Res. Not., 2011 (2011), 385459. https://doi.org/10.5402/2011/385459 doi: 10.5402/2011/385459 |
[46] | R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012 |
[47] | J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional $q$-difference equation, Electro. J. Qual. Theory Differ. Equ., 2011 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.92 doi: 10.14232/ejqtde.2011.1.92 |
[48] | M. Shabibi, M. E. Samei, M. Ghaderi, S. Rezapour, Some analytical and numerical results for a fractional $q$-differential inclusion problem with double integral boundary conditions, Adv. Differ. Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-021-03623-2 doi: 10.1186/s13662-021-03623-2 |
[49] | A. Salim, S. Abbas, M. Benchohra, E. Karapinar, A Filippov's theorem and topological structure of solution sets for fractional $q$-difference inclusions, Dynam. Syst. Appl., 31 (2022), 17–34. https://doi.org/10.46719/dsa202231.01.02 doi: 10.46719/dsa202231.01.02 |
[50] | A. Dobrogowska, A. Odzijewicz, Second order $q$-difference equations solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. https://doi.org/10.1016/j.cam.2005.06.009 doi: 10.1016/j.cam.2005.06.009 |
[51] | B. Ahmad, S. K. Ntouyas, Boundary value problems for $q$-difference inclusions, Abstr. Appl. Anal., 2011 (2011), 292860. https://doi.org/10.1155/2011/292860 doi: 10.1155/2011/292860 |
[52] | T. Ernst, The history of q-calculus and a new method, Citeseer, 2000. |
[53] | C. R. Adams, On the linear ordinary $q$-difference equation, Ann. Math., 30 (1928), 195–205. https://doi.org/10.2307/1968274 doi: 10.2307/1968274 |
[54] | J. B. Remmel, M. L. Wachs, Rook theory, generalized stirling numbers and $(p, q)$-analogues, Electron. J. Comb., 11 (2004), 48. |
[55] | M. Mursaleen, K. J. Ansari, A. Khan, On $(p, q)$-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. https://doi.org/10.1016/j.amc.2015.04.090 doi: 10.1016/j.amc.2015.04.090 |
[56] | P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-taylor formulas, Rsults Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z |
[57] | J. Soontharanon, T. Sitthiwirattham, On fractional $(p, q)$-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7 |
[58] | Z. Qin, S. Sun, Positive solutions for fractional $(p, q)$-difference boundary value problems, J. Appl. Math. Comput., 68 (2022), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w doi: 10.1007/s12190-021-01630-w |
[59] | C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum-difference equations with separated boundary conditions, Adv. Math. Phys., 2018 (2018), 9089865. https://doi.org/10.1155/2018/9089865 doi: 10.1155/2018/9089865 |
[60] | P. N. Sadjang, On two $(p, q)$-analogues of the laplace transform. J. Differ. Equ. Appl., 23 (2017), 1562–1583. https://doi.org/10.1080/10236198.2017.1340469 |
[61] | G. V. Milovanović, V. Gupta, N. Malik, $(p, q)$-beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. https://doi.org/10.1007/s40590-016-0139-1 doi: 10.1007/s40590-016-0139-1 |
[62] | M. Tunç, E. Göv, Some integral inequalities via $(p, q)$-calculus on finite intervals, Filomat, 35 (2021), 1421–1430. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T |
[63] | M. N. Hounkonnou, J. Désiré, B. Kyemba, $R(p, q)$-calculus: Differentiation and integration, Sut. J. Math, 49 (2013), 145–167. https://doi.org/10.55937/sut/1394548362 doi: 10.55937/sut/1394548362 |
[64] | O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13 (2012), 603–612. |
[65] | R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model., 49 (2009), 703–708. |
[66] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005 |