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Abstract: This work is concerned with the study of the existing solution for the fractional (p, g)-
difference equation under first order (p, g)-difference boundary conditions in generalized metric space.
To achieve the solution, we combine some contraction techniques in fixed point theory with the
numerical techniques of the Lipschitz matrix and vector norms. To do this, we first associate a matrix
to a desired boundary value problem. Then we present sufficient conditions for the convergence of
this matrix to zero. Also, we design some algorithms to use the computer for calculate the eigenvalues
of such matrices and different values of (p, g)-Gamma function. Finally, by presenting two numerical
examples, we examine the performance and correctness of the proposed method. Some tables and
figures are provided to better understand the issues.
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1. Introduction

As we know, to solve an array of problems in STEM fields such as mathematics, physics and
engineering, we have to model the phenomena by differential systems. It is clear that, the accuracy
and efficiency of the proposed model depends on several factors. For this reason, researchers have
always tried to optimize their methods. One of the new methods that have recently seen dramatic
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growth in the study of BVPs is the use of non-integer derivatives. Perhaps the reason for this increase
is the efficiency of fractional derivatives in maintaining system memory and its non-localization [1].
This high potential of fractional derivatives has led to the study of the theory of fractional operators
from different perspectives and various generalizations, the most famous of which are the fractional
derivatives of Riemann-Liouville and Caputo [2], and Hadamard and Caputo Fabrizio [3,4]. In
bio-mathematics, for example, some researchers have developed models for the mumps virus [5],
hepatitis B [6-8], human liver [9], and COVID-19 [10, 11] using fractional calculus. In
thermodynamics, models for thermostats using red the Caputo fraction derivatives, and Riemann
Liouville were presented under different conditions and the stability of these models were
investigated [12-14].  Some important equations in physics such as Schrédinger [15, 16],
Sturm-Liouville [17-19], Pantograph [20-22], Langevin [23-26], etc. were also studied from
different aspects in this field. See [27-39], for more contributions on fractional calculus.

On other hand, the history of mathematics and physics is somehow intertwined with
generalization.  One of these common generalizations relates to the work of the English
mathematician Frank Hilton Jackson in removing the concept of limit from derivative. In 1910, he
laid the foundations for the exciting world of quantum calculus with the introduction of the
g-derivative [40,41]. The concept of h-derivative was later introduced, but its growth and application
were not as great as g-derivative. The basic topics related to these two types of derivatives are
discussed in detail in the book "Quantum Calculus” [42]. The concepts of g-derivative, and g-integral
were later developed by other researchers [43,44]. This led to the development of quantum fractional
calculus. Also, due to the possibility of using computers in discrete spaces, the fractional
g-differential equations have been given special attention by researchers in the last decade. For
example, in 2011, the existence of positive solutions for BVPs with fractional g-difference equation
was investigated by El-Shaed, Ferreira, and Ma et al. [45—47]. Shabibi et al. studied analytical and
numerical solutions for g¢-differential inclusion via new integral boundary conditions [48].
See [49-53], for more information.

The generalization of the derivative operator did not end with the g-derivative only, and long after
the g-derivative itself was generalized. In 2004 [54], Remmel and Wachs presented (p, g)-analogues
for Stirling numbers inspired by g-analogs from quantum calculus. Later in 2015 [55], Mursaleen
et al. investigated (p, ¢)-analogs of Bernstein operators. In 2018 [56], Sadjang presented fundamental
theorem of (p, g)-calculus and some (p, g)-Taylor formulas. Soontharanon and Sitthiwirattham, in
2020, reviewed some properties of fractional (p, g)-calculus [57]. After their work, some researchers
investigated the boundary value problems using (p, g)-calculus. One can find more contributions about
this topic in [58—63]. Promsakon et al. studied the following (p, g)-difference BVP of second order:

D;qu(t) =m (t, u (pzt)) , te [O, T/pz] ,
u(0) + oDy, qu(0) = p3, ki u(T) + koD, (u(T [ p) = K3,

whit constants u;,«;, j = 1,2,3, and D, , denote the (p, g)-difference operator, m € C([0,7/ p*l x
R, R) [59]. As mentioned at the beginning, fractional calculus is preferable to ordinary calculus due to
its lower error rates in studying and modeling natural phenomena, especially in computer calculations
and simulations. For this reason, we do not want to be deprived of this advantage in this research.

To the best of our knowledge, the fractional coupled system of (p, g)-difference equations in
generalized metric space using the Lipschitzian matrix has not been investigated properly. Therefore,

AIMS Mathematics Volume 8, Issue 1, 1566-1591.



1568

taking the idea from the above topics in the present work, we want to examine the following BVP
involving the Caputo fractional (p, g)-difference operator:

CDf,‘,qu(t) = m(t,u(pft) ,v(pft)), te [O,T/p»[] , 1 <4 L2,
DE () =n(tu(p’t).v(p)). te|0.7/p¢]. 1<n =<2,
u(0) = w'(0)=0, v(0)=v(0)=0,

D, (T /p) = 1Dy qu(n1), Dp (T [p) = 2Dy v(m),

(1.1)

where ¢ = max{(;, 5}, J = [O, T/pf], with constants y;,7; (j = 1,2), and m,n € C(J X RZ,R), CDf,,q
and D,, denote Caputo fractional (p,q)-derivative and first-order (p,g)-difference operator,
respectively. The novelty of our method is that, at first, we associate a square matrix to the desired
BVP such that its element depended on fraction order and quantum parameters (p, g). Then we will
prove the existence of the solution using the fixed point theory.

2. Preliminaries

This section covers the basic concepts of quantum calculus and (p, g)-calculus that we will need
to present our main results. There are also some important theorems of fixed point theory that are
necessary to discuss the existence and uniqueness of the solution.

Assume that J = [a,b] C R and p,q € (0, 1]. Also let C (J, R)? := C(J,R) X C(J,R) equipped wittll
the vector norm || - || defined by ||zl| = (llull~, [[Vll) or norm || - ||x defined by ||zllx = (Ilullfo + IIVIIi,)§
for x = (u,v), where ||W|le = max,; |w()| for w € C(J,R). It is obvious that (C (J,R)*, |- ||) or
(C (LR, |- ||x) is a Banach space.

Definition 2.1. [57] Let z be a real number and 0 < p,q < 1, then the p, g-analogue of 7 is defined in
the following manner

[2]pg = , zeN. 2.1)
2 p_q

(n)
P-q’

c-d)yy =1,
(c— d)gf?l = H;:é (cpj - dqj) , c¢,deR.

Also, for the power function (¢ — d),, it’s p, q-analogue with n € Ny := {0, 1,2, ...} reads as follow:

Definition 2.2. [57] Let z € R, the p, g-Gamma fuction for z is defined in the following manner

r-9%,"

Lra® = g

Note that, I', ,(z + 1) = [z],,['y4(2), 1s valid. We presented the following Algorithm to compute the
I', 4(z) function. Some numerical result for this function presented in Tables 1 and 2.
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Table 1. Some numerical results for I', , function values, with p = 0.95 and z = 2.5.

r q=02 qg=0.5 q=0.6 q=0.7 q=0.8 q=09
p=0952z=25

1 1.4766 2.6273 3.4863 5.1282 9.2364 29.7243

2 1.5263 2.9606 4.0159 6.0060 10.9431 35.4698

3 1.5368 3.1276 4.3213 6.5649 12.1048 39.5508

4 1.5390 3.2144 4.5070 6.9461 12.9633 42.7302

5 1.5395 3.2603 4.6232 7.2169 13.6317 45.3628

6 1.5396 3.2847 4.6970 7.4142 14.1704 47.6362
15 1.5396 3.3126 4.8270 7.9551 16.4436 61.5187
16 1.5396 3.3127 4.8279 7.9663 16.5529 62.6948
21 1.5396 3.3127 4.8293 7.9922 16.9100 67.9298
22 1.5396 3.3127 4.8295 7.9942 16.9543 68.8620
36 1.5396 3.3127 4.8295 7.9999 17.1866 78.7064
37 1.5396 3.3127 4.8295 8.0000 17.1907 79.2148
73 1.5396 3.3127 4.8295 8.0000 17.2131 80.1671
74 1.5396 3.3127 4.8295 8.0000 17.2132 80.6125
249 1.5396 3.3127 4.8295 8.0000 17.2132 89.4425
250 1.5396 3.3127 4.8295 8.0000 17.2132 89.4426

Table 2. Some numerical results for I, , function values, with p = 1 and z = 2.5.

r qg=02 qg=0.5 q=0.6 qg=0.7 q=0.8 q=09
p=1,2z=25
1 1.3465 2.3270 3.0381 4.3529 7.4253 19.4816
2 1.3874 2.5893 3.4449 5.0035 8.6105 22.6972
3 1.3955 2.7116 3.6611 5.3813 9.3376 24.7266
4 1.3971 2.7707 3.7822 5.6157 9.8190 26.1175
5 1.3975 2.7997 3.8519 5.7672 10.1541 27.1253
12 1.3975 2.8282 3.9501 6.0612 10.9983 30.1220
13 1.3975 2.8284 3.9512 6.0686 11.0359 30.3085
18 1.3975 2.8284 3.9527 6.0829 11.1340 30.9169
19 1.3975 2.8284 3.9528 6.0838 11.1434 30.9957
28 1.3975 2.8284 3.9528 6.0857 11.1754 31.3959
29 1.3975 2.8284 3.9528 6.0858 11.1764 31.4195
44 1.3975 2.8284 3.9528 6.0858 11.1802 31.5821
45 1.3975 2.8284 3.9528 6.0858 11.1803 31.5862
91 1.3975 2.8284 3.9528 6.0858 11.1803 31.6224
92 1.3975 2.8284 3.9528 6.0858 11.1803 31.6225
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Algorithm 1. The proposed procedure To calculate I',, ,(x).

function G = gammapqg(p,d,z,r)

$pg-Gamma Function

d=1;

for k=k=l:r

g=(d.*x(1-(g./p) . " (k+1)) ./ (1-(q) .~ (z+k))) ./ (p—q) .~ (z-1);
end

~N O B W N =

end

Definition 2.3. [57] Suppose that f : [0,7 ] — R, then the (p, q)-derivative of f is defined by

f(p2) — f(qz)

Pral @& ==, o

, for z#0,

which D,,,,f(0) = f'(0).

Definition 2.4. [57] Consider f : [0,7] — R, then the generalized quantum integral with p,q
parameters is defined as following formula

f F@dpyz = (p- q)xzpmf(piﬂx), (2.2)

n=0

(I50f) @ =

which the right-hand side converges. Furthermore, in Riemann-Liouville type, we have
(‘)r

ez
Pq

& n n 1 n
(P-qz D q (Z_q“z)@ )f(q Z)
p(g)rp’q({) p— pn+1 pn+1 va p{+n ’

where 7 € [0, p®T].

Remark 2.5. [57] For a continuous function f, we have:

{(Dfa,qf) @ = (Disalig  f) @

(CDi,qf) (2) = (I[[] (D[%f) ),

where [(] is the smallest integer greater than or equal to {. Notice that, (Dg’q Nk = f(z) and
‘DY f(2) = f(2).

Lemma 2.6. [57] The following relation is established:

[Z1-1 k

(5Pt ) @ = 10 = 2 m (D,£) ),

where { € (n — 1,n). Indeed, for equation ("D} f)(z) = 0, it’s general solution expressed by f(z) =
Co+Crz+ P+ -+ 127, where cg, ..., cho) €R.
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Definition 2.7. [64] Assume that X # 0, then the map d : XX X — R, is called a vector-valued metric
on X if the following properties met

@ Vz,we X,d(z,w) =20, and d(z,w)=0ifandonlyifz=w.

(i) Vz,we X, d(z,w) =dw,2).

(ii)Vz,w,y € X, d(z,w) < d(z,y) + d(y, w).

For such a space, namely (X,d), which is called generalized metric space, convergence and
completeness are similar to those in usual metric space.

Definition 2.8. [64] Suppose (X, d) be the same space defined in the above, then an operator T :
X — X is called a contraction if there exists a matrix M which converges to zero such that Vz,w € X,

we have d(T (z), T (w)) < Md(z, w).
Definition 2.9. [65] A matrix M, is called convergent to zero if M* — 0, as s — oo.
Theorem 2.10. [65] The following proposition are equivalent:
(i) M,x, convergent to zero.
(i) I — M is nonsingular and (I — M)™" = ¥.°2) M such that I denotes unit matrix of the same
order as M.
(iii)) YA € C, we have |A| < 1, such that |M — A1] = 0.
(iv) I — M is nonsingular and (I — M)~ has nonnegative elements.

Lemma 2.11. [64] Let Cxn, Dyuxn are two matrices. If C,x, converges to zero and the elements of
Dy are small enough, then Cx, + D,xn also converges to zero.

Theorem 2.12. [66] Let T : X — X be a contractive operator with a Lipschitz matrix M, and (X, d)
be a complete generalized metric space. Then, T has a unique fixed point w* and each wy € X

d(T" (W), w*) < MECT = M) ' d (wo, T (wp)), Yk € N.

Theorem 2.13. [66] Let D be a nonempty closed bounded convex subset of Banach space Z, and
F : D — D is a completely continuous operator. Then, F has at least one fixed point.

Theorem 2.14. [66] Let € > 0, also, the following two conditions must be met at the same time:
(i) The operator F : Z.(0,Z) — Z is a completely continuous.
(ii) For every solution w, of w = 0F (w), such that 6 € (0, 1), we have ||w|| < &.

Then, the aforesaid operator has at least one fixed point.

Notation 2.15. In the continuation of this section, we will introduce an important matrix.

e | @3
such that a;,b; > 0,i=1,2 and
A l(mnf“l —T-‘l—l) o
A\ Tpe(dn) Ll +1) 2.4
N (Azn?‘l - Tﬁz—l) e
A\ Tpy(o) g2+ 1)

where Aj=1—pu; #0,i=1,2.
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In view of Theorem 2.10, we present some sufficient conditions for the convergence of M.

Theorem 2.16. Assume that one of the following three conditions hold true, then the matrix M which
defined in (2.3) converges to zero

2 Aobr+Ajar+ \/4A1A2a2b1+(A2b2—A1a1)2 .
(7’{1) AN Asarhy + (Asby — Ayay)” > 0 and 5 <1,

(H,) 4A Ararby + (Asby — Ajay)? = 0 and |Asby + Ayay| < 2 ;

(7'{3) AN Ayarby + (A2b2 — A1a1)2 < 0and AN\, (a1by — azbl) <1.

Proof. By doing a simple calculation, we get

A—aA —-bA
AL = Myyo| = L T = 22— (@A + byAy) A+ A Ay (ayhy — azby) = 0,

—(121\2 A- bz[\z B

that will lead to:
(i) Ay, = @hirbahoz VA whop A > 0;
(ii) A = SR when A = 0;
(i) Ay 5 = SAD2E VN hon A < 0);

which

A = (a1 A1 + byAy)* — AN Ay (ar1by — azhy) = (a1 A — byAy)* + 4N Asash,.

According to Theorem 2.10 (3), and some calculations, we get the desired result. O

We end this section with the following lemma.

Lemma 2.17. Suppose that m,n € C([0,7 /p“],R) are given functions and u,, u, are constants. Then
a unique solution of the following BVP:

Diu(ty=m(), t€|0.7/p"], 1< =2,

Dyt =n(D), t € [(), T/p@], 1<6 <2,

u(0) = v(0) = u?0)= v?0)= 0, i= 2,..,n-2,
Dy u(T/p) = puDpqu(m), Dpg(T/p) = p2Dpgv(i2),

(2.5)

AIMS Mathematics Volume 8, Issue 1, 1566—-1591.
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is given by

(l qs)(§1 ( s )
d
M(t) f ({l)rpq(gl) p{l—l pqS
e
’ d
A‘{Mfo p )r,,q(gl—l)m piz ) e’
f'r/p (T'/p- qs)@l -2) ( s )d }
_ n |
o ph )qu(fl—l) pi2 pas

¢ (t qs)((z ( s )
(1) = - n —|d,,
T o0, )

i [ (e
Ay o p(% )qu(a—l) pa2 )
_f‘”” (T /p—q9) Z)n( s )d s}

o pCIr, -1 \PeE)TT)

Ai=1-24#0, i=1,2.

(2.6)

where

Proof. By applying the (p, g)-integral on both sides (2.5) and using Lemma 2.6, we get

f e (&1-1)
1 = f u - qs) m( — )dp,qs +co+cit, te[0,7] (2.7)
0 p(é)rp,q(gl) P

where ¢, ¢, are constants. Now by using condition in (2.5), we find ¢y = 0, and

" (n — qs)(g“l—Z) s p T/p T /p - qs)(§1—2) s p
7 m o2 |¢ra 7 m n-2 | “ra
0 P2 Fp,q({l) p 0 pr 2 Fp,q({l) %

Substituting the values of ¢ in (2.7), we obtain (2.6). Proof for v(¢) is similar to the above. O

1
A Hi

Cc1 =

3. Main results

We need the following assumptions to prove our main results.

(L) myn : JxR?> — R are jointly continuous functions such that satisfy Lipschitz condition
Yu,v,u,v € R, and some ay, a,, by, b,, where

[m(z, u,v) — m(t, i1, V)| < aylu — ul + bylv — v,
[n(t, u,v) — n(t, i, v)| < axlu — ul + by|v — ).

(£12) The Caratheodory functions m, n : J x R? — R satisfy Lipschitz condition as following form:

[m(, u, v)| < ailul + byv| + ¢y,
In(z, u, v)| < aslul + bo|v| + 2,

for all u,v € R, and some a;, as, by, b1, ¢y, ¢ > 0.
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(£L13) The jointly continuous functions m,n : J X R? — R satisfy following inequalities:

{ Im(t, )| < wy (8, lulg)

In(z, W] < wa (1, |ulg) ,

for all u,v € R and ¢t € J, which | - |g represent the Euclidean norm in R2, and wy, w, are jointly
continuous functions on J X R, such that nondecreasing in their second variables.

(£,) The matrix M.y, defined in (2.3) converges to zero.

(£3) A K, > 0 which for o = (07, 0») € (0, +0)?, ¥t € J the following inequalities:

¢1-D
1 [ 1 (t_qs)lj,é

SuptEJ p_] ({1) w1 (S, |p|E) dp,qs7

2 1—‘p,q(éll)
a1 (m—qS)(z,‘_z) TIp (T/p-gs)sl >
{#1 f I H—w1 (5, [ple) dpgs — fo (zl)—'”wl (s, lole)dpgsp| 2 1,
P2 Tpe&i-1) 2 Tpqahi=1)
(toxa)]
1 1 (1=gs)p,

SupteJ p_2 (,(2) = %) (S, |p|E) dp,qs

2 rp,q({Z)

T/p (T/p —gs) 2

M (- qv) f_ ) dp
—plwz (S,l |E) ’qS 0 ([1 )
2 Ipq(gz ])

Ha
AZ 0 ([ )qu(§2 1)

) (S, |p|E)dp,qs}] 2 1’

implies |o|g < Kj.

Now, to find the solution to our boundary value problem (1.1), we will convert it to finding a
unique fixed point for an operator. We will use Lemma 2.17 to define this operator. Thus, we define
F : C(J,R)*> = C(J,R)?, such that F := (F;, F>) which F;, F, are given by

¢ (r— qs)((l
0 p([zl)rp,q(évl)

_ (£1-2)
N Ail{,ul Lm (;7_11 qs),q m(s, " (pg]_ls) ’ v(pgz_ls)) d, s

PO, - 1)
TIp (T |p — qs)(él 2) - ot
- - m(s,ulp s),v(p? s d,s},
j(; p( )rpq(gl_l) ( ( ) ( )) P4
t( —gs )((2 D
0 p(%)rp,q(§2)

_ (£-2)
i [ ) 5 s

P, (L - 1)

_ (£2-2)
B LT/F (f{lp C]S)pj[ 1 (S, u (pll—ls) ,V (pfz—ls)) dp,qs}.

P, (L - 1)

Fi(u,v)(t) = m(s,u(pg‘_]s) ,v(pgz_ls)) dyys

3.1)

i - (01907 ) s

Theorem 3.1. Let L1, L5, L3, and L, are hold true. Then the problem mentioned in (1.1) has a
unique solution.
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Proof. As for assumption £, and Theorem 2.10 (4), it simply follows that I — M,, is invertible and
its inverse (I — MzXz)_l has nonnegative elements. Now, we define

= {wv) € CURY : lulls < Ky, Ml < Ko},

K M,
~ | > - My
B [pa-aeer| 0]
Here Ml = Almmax’ MZ = AoNpmax with Mpax = MaXsey |m(t, 0, 0)|9 and Mnax = MaXsey |TI([, 0, 0)' We
follow the proof in two steps. . .
__ Atfirst: we show that the operator ¥ mentioned in (3.1) maps U into U. For this purpose, ¥(u,v) €
Uand 0 <t <1, < 1, by employing £, ;, we can write

|F1(u, v) (22) — Fi(u, v) (1) |
2 (1, —qs)@D G-1 51
, 1 , 62 d
. —p(é')rp’q(a) m(s I/l(p S) V(p S)) p’qs
11 (t; — qs)(ll—l)

~Jo PO, (@) m(S’”(pgl_ls)’V(pgz_ls))dp’qs

-2)

It, — 1] 1 (n—qs)¥! _ _

Pt [ () () s
1 0 pr 2 qu({l_l)

&1-2)
_v[OvT/P (T/p - qS) m(s’u(p§1—ls)’v(pgz_IS))dp,qs}

pIr, @ - 1)

such that

11 (fz _ qs)(ll—l) _ (tl _ qs)({l—l)

< . p({1>2(")rp,q(a) m(s,u(pll—ls),v(p{z—ls))dp,qs
N M ai-1 51
' fn P, (@) (s (p710) () (3.2)

(&1-2)
N |t2A_lt1|{/,¢l fO'TIl (m qS) ! m(s’u(pg“l—ls),v(p-(z—ls))dp,qs

P, @ - 1)
. [ £ (t, — qs)@]—l) —(t - qs)(él—l)
- 0
SO, ) m (s (p7's). v (p771s)) d""’s]
n 271 pgl61
£1-2)
[ A ) )
0

e (T/p —qs)f,”

-, (s 5. () )
0
¢
p(zl)rp,q({l)
(£1-2)
It, — 1] n (M= g9,y _ _
Pl (s (1)
1 0
14
P, (& - 1)
AIMS Mathematics Volume 8, Issue 1, 1566—-1591.
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which yields that
|F1(u, v) (22) = F1(u,v) (t)| > 0 as t — 1.

Therefore, #; maps U into C (J, R)z. Moreover, we find that

|m (s u (p(‘ ls) ,V (pgz_ls)) | < |m (s, u (pg‘_l s) Y (p-zz_l s)) —m(t,0,0)| + |m(z, 0, 0)|

- . (3.3)
< a1 Ky + b1 Ky + My,

and

f &
1F1(u, v)(0)] < , %Pﬂ (s.u(p?'s).v(p*'s)) ‘dp,qs

i no (g - gs) @Y o -
+A{” lfo (‘lz’l)rpq(a 1)'m<s’u(p ) (7)) s
_ f TIe (T |p—qs)?

o pIr, & - 1)

‘m S, u(p[1 ),v(pgz_ls)) 'dp,qs} (3.4)

¢ (l‘ qs)(él i
4 P9
p(2 )rp,q({l)

t o= gs)yy TIr (T |p = qs)yy
+ K{'ul f o dpgs — f - dp,qs}].
o p( )rp’q(gl ~1 0 p( ) )l"p,q(él ~1)

71, O] < Ay Ky + biKy + )
<K.

< (CZ]R] + b1R1 + mmax)[

Thus,

(3.5)

It can also be proved in a similar way that ¥, maps U into C (J,R)?, and

|F2(u, v)(?)| < Az(azkz +byK,y + nmax)
<K,.

(3.6)

Combining (3.5) and (3.6), we get

[||ﬁ(u,v)||w]<[§]
P2 lle |~ K |

that is, we proved that 77(17 ) C U. Hence, ¥ maps U into U.

Secondly: We shall show that the operator ¥ mentioned in (3.1) is a generalized contraction. For

AIMS Mathematics Volume 8, Issue 1, 1566-1591.
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achieve it, Y(u, v), (i1, V) € ﬁ, let m = m(-, &, V), using L; 1, we have

73, (0 = T, 7))

(04
f (t({l)c;i)q({l)'m s, u(pa ),v(plz—ls))_m(s’b—t(pg“l—ls)’l—)(pgz—ls)) |dp,qs

m(m )({l B 1 1 1 1
A]{Mlj; ‘m (s,u(pgl_ s),v(p‘vz_ s)) —m(s,ﬁ(p-(“ s),\'/(pgz_ s)) ‘dp,qs

P, (4 - 1)

/p (T )((1 2)
‘fo P—qs ‘m(s’u(pglls)’v(pﬁzls))_m(s’ﬁ(p,(lls),\_/(pgzls))‘dpgs}

p( >rpq<§1 ~1)
’(t qs)(fl

(@l = @l + bylv = ¥)d,. g

0 pIr, () (3.7)
t (- g8)$?
+—{,u1f — (allu—ul+b Iv—vl) pqS
Ao pr, @ -1
TIp (J~ (&1-2)
_ f T /p- qs) (allu —u|l + by — v|)d,,,,,s}
o pIr,@ -1
( s)(§1
(allu —ul+ bilv -9 [f [lq—dl,,qs
PO, (&)
t (- gs)% 2’ Tie (T [p—qs)s™?
A ‘“f ) Ara® _f ) drasy |
1 0 P2 Fp,q(gl - 1) 0 P2 Fp,q({l - 1)
which yields that
‘ﬂ(u, v)(t) — F1(#, V)(2) ' < Al(alllu — @l + byllv - VII). (3.8)
Similarly, we can obtain
[t (0 = ot 0| < Ao(aslle = @l + bl = 7). (3.9)

We can then put (3.8) and (3.9) together and rewrite as

1) = T @ Pl it — il
[ IFa s v) — Fallt, Dl ] < MM[ v = ¥l ]

Now, according to £,, one can apply Theorem 2.12 (Perov’s fixed point theorem) to achieve what
is intended. o

Theorem 3.2. Let L, and L, are satisfied. Then the problem (1.1) has at least one solution.

K,
K,

AIMS Mathematics Volume 8, Issue 1, 1566-1591.
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where ¢; = ¢;A;, and &, = ¢, A,. Define
U = {uv) € CULRY : llullo < Ky, IVl < Ko}

Obviously, U # 0 is a closed, bounded and convex subset of C (J, R)%. We follow the proof in three
steps.

Step 1: At first, we prove that ¥ (U) c U. For this purpose, Yu,v € C(J,R) and ||u|lc < Ry, |[V]|w <
R, by employing L;,, we can write

71w )| < At + bilil + 1)
<Aa Ky + Alble + Cy (310)
<R

Similarly, we can obtain

[Pt )| < Aa(arliall + balivil + )
< AarRy + AybrRy + &5 (3.11)
<R.

We can then put (3.10) and (3.11) together and rewrite as
[ 157 (14, V)]l ]< [ R, ]
IF2 Il |~ [ R2 |
Thus, we conclude that ¥ (U) Cc U.

Step 2: In this step we will show the operator # is continuous. Suppose that (u,, v,) be a sequence
which (u,,v,) — (u,v) in U. For convenience put m,(-) = m (-, u,(+), v,(-)) and m(-) = m(-, u(-), v(-)).
Then Yt € J, we find

3t v)0) = Fi 0, )0

&-1

I ) s

no(n, — )({1—2)
ol [ 9) ) s

T/p (T/p - )(4”1—2)
e ) () () ) s
< Al Gt (9,7 () = (s, u (), v |

Thus, 77 is continuous. As same way we arrive that 7, is continuous. Hence, ¥ is continuous.
Step 3: Finally in this step, we prove that 7 (U) is relatively compact. In view of ¥ (U) C U, we

AIMS Mathematics Volume 8, Issue 1, 1566-1591.
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find ¥ (U) is uniformly bounded. So the only thing left is to show ¥ is an equi-continuous operator.
For achieve this, Y(u,v) € U and t1, 1, € J such that #; < 1,, we have

1 (u, v) (12) = F1(u, ) (11)]

al (lz _ qs)(il—l) _ (l‘] _ qs)(ll—l)d 1> (lz _ qs)((l_l)d
0 (Ll) paS Tt Gr ) p.q’
V4 : I_‘p,q(gl) nop P4 él

It — ti] (- g9)$? Tie (T [p—qs)s.™?
A\ f 5 @as _f 5" “ra*
0 P2 l—‘p,q(gl - 1) 0 P2 Fp,q(él - 1)

—0ast, - 1.

< (alKl + b1 K, + Cl)

Similarly, we get
1F2(u, v) (12) = Falu, v) (1)

0 — as) eV — (4 — g5) @D B (1 — )& D
f (2 —g9) h (1 —g9) dos + (z(”)qS) d,0s
p(?)Fp,q(g“z) n Pl 4(8)

|t — 1l (= gs)ey Tie (T /p — qs)é?
+ A {ﬂlf ((2,1) pq dp,qs - (12 ) dp,qs
0 p 2l - 1D o pEIT,(LH-1)

—0asth — 1.

< (ClzK] + b, K, + CQ)

Thus, we conclude that 7 (U) is an equi-continuous and this yields # (U) is relatively compact.
Hence, by utilize Theorem 2.13, we conclude that the problem mentioned in (1.1) has a solution in
U. O

Theorem 3.3. Let assumptions L, 3 and L5 are satisfied. Then the problem formulated in (1.1) has at
least one solution.

Proof. As mentioned in aforesaid our Banach space is X = C (J, R)? equipped with the norm ||u/|x.
Suppose that K > K; and define the map ¥ : By — C (J, R)? which F is formulated in (3.1), and

By := By (O,C(J, R)z) = {u eCLR)?: |lu|l < K}. We follow the proof in two steps.

Step 1: In this step, we shall prove that ¥ is a completely continuous operator. According to
Theorem 3.2, we have ¥ is continuous. Therefore, we shall prove that ¥ (BR) is relatively compact

set. For achieve this, at first, we prove that (BR) is uniformly bounded.
Thus, Y(u,v) € Bk, t € J, we find

t (r— gs )((1
Fru Ol < | Py (s, lul) s
0 p(Z) p,q(gl)

O a9
+K{,u1 [ i s
o p >r,,q<§1—1)
_f’”" (T /p— g™
o pIT, @ - 1)

wi (s, |ulg) dp,qS}

AIMS Mathematics Volume 8, Issue 1, 1566-1591.
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t (t qs)@l
Ca (5, VIK) dyys
0o pr, () w1 (5 V2K) do

t (- gs)
+ — V2K)d
A{lul‘[ov p([lz )qu(§1 ~ 1) ( ) .S

Tip (T (&1-2)
_f P AT Ip=499),, ( \/-K) pqs}
0 p( 2 )Fp,q(gl - 1)
t ( qs)(fl
7 dpgs
0 p( )rp,q({l)

t mo (g qs)({' -2) TIp (T |p - qs)({l 2)
+ K{'ulf — dp,qs—f — dp,qs}],
o p(Ir, & - 1) o pIr, & - 1)

which yields 77 (Bg) is uniformly bounded. As same way, it is easy to check that 7, (Bg) is also
uniformly bounded. Hence, we conclude that ¥ (BR) is uniformly bounded. Now, we prove that

< nzlea}X {wl(t, \/EK)}[

F (BR) is an equi-continuous set. For do this, ¥(u,v) € Bg and t,,, € J such that t; < t,, we can write
|F1(u, v) (22) — F1(u, v) (1)

(1, — @G- _ tH— (&1-1) 2ot — ((452))
f (t — qs) i (t1 —gs) dys + (z(ﬂ)qs} d,,s
A @ o PO, @)

Ity — 11 (- gs)$? TIe (T [p—qs)§ >
+ A M @ dpgs — @ dpys
0 pte Fp,q((l -1 0 pt 2 Fp,q(gl -1

—0ast, > 1.

< rrtleajx {wl(t, \/EK)}

Similarly, note that
|F2(u, v) (1) — Falu,v) (1)
] (lz _ qs)({z—l) _ (tl _ qs)({z—l)d 12 (fz _ qs)(_(z—l)
0 (%) O, )
P : Fp,q({Z) P P52

Itr — 1] (- g8)? TIe (T /p—qs)\2?
+ A M f @ dpgS = f @ dpgs
0 ptz Fp,q(§2 - 1) 0 pr 2 Fp,q(gz - 1)

—0ast, > 1.

< max {wz(t, \/EK)} dpys

Thus, we arrive at 7 (BR) is an equi-continuous set. Hence, ¥ (BR) is relatively compact set.
Step 2: In this step, we show that the set Z = {z : z = uF (z), for u € J} is bounded, such that
z = (u,v). Note that, for t € J, we have

(D] = |1 (u, V)|

t (041
0 l(t:(z)cll“jq(évl)m (S’ M(pgl_ls) ’v(pgz_ls)) dpgS

AIMS Mathematics Volume 8, Issue 1, 1566-1591.
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t f’]l
+_
A Hi .
TIe (T/p - qs)yy”
J1-1
- m(s,u(p s
. i s

< sup

t n (771 —4qs Psq
+ K /'tl ({1—1) Wl
0 P Fp q(§1 - 1)

f”” (T/p—qs5)L™?
0

s)@ 1-2)

t mo(m—qs), _ _
il ) ) () s

f”l’ (T/p~qs)sy”
0

s i - () v () d”"’s}
t (&1-
(t = q5)pg ’m(s’u<p§1—ls),v(p{2—l

0 p(Z)rp,q(gl)
'm (s, u (pg‘_l s) ,V (p»‘vz_l

(m = qs)yy >
- s)) ‘dp,qs}

s)) ‘dp,qs

s)) ‘dp,qs

P, (G - 1)

pIr, & - 1)

! (t qs)@l
[
(S,|X(P )lE) p.gS

)62
wi (s, IX(p" : )IE) pqS}]

teJ

p(“z )Fp,q({l - 1)

Similarly, one can obtain

Assume that o

p1 = SUP;e; [fo (11
1 2
{/Jl 711 ; w1 (S, |p|E) dp,qs ) 71
P2, -1 (
P2 = SUP,, [fo

+AL2{/12

o ({2-1

" (t — qs)({z D )
[v(1)] < sup [ Q—WQ (s, |x (p" ls) IE) dpgs
i [Jo pIr, ,(2)
(12 = q8)5

t i o
*5{” zfo ((21>rpq(§2—1)wz<s’lx(p <)1) s

T/ (-2
~ ‘fo‘ p (T/P C[S) ) (S, |x( ) |E) pqs}]

P, (L - 1)

= |[ttlloor 2 = |[V||o- It follows from (3.12) and (3.14), we have

(- qs)pq
q((l)

Wi (S7 |p|E) dp qs
m qs)],q T/p (T/p—qS)jf,lq*z)
P02 @1

(-1
4 (t_qs)p,é

(42) %) (57 |p|E) dp,qs
p2 Fp,q({Z)

T/p (T/p-gs)s2 >

WZ(S9|p|E)dp,qs_ o ((] )
p 2 F]),q(§2_l)

-2
o (—gs)ys
02T, (-1

In view of L3 we deduce that |o|g < K. Since |o7|g = ||z||, and K; < K, one has ||z||, < K.
Thanks to Theorem 2.14 to obtain the existence result.

AIMS Mathematics

wi (S, |,0|E) dp,qs}]a

w2 (S’ |P|E) dp,qs}]-

(3.12)

(3.13)

(3.14)
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4. Examples

Example 4.1. Consider the following fractional (p, q)-boundary value problem

3 2 t)
3 8
i %u(t) =05+ g X 22( )cos(4v(ﬁ§)), t€10,8],
5 1 -
;% v(t) = 05+1—0 2()sm(8v( 775 1€[0.8], 4.1)
u(0) = u'(0) = 0, V(O) =v'(0) =0,
D, u(4) =2D, ,u(1), D,,v(4)=3D,,v(1).
In this case we take (| = % 0= %, T=1p= %, q= % m=mn,=1,and u; =2, u, = 3. It is easy
to check that:
A = = =0.7454, and A, = = =0.2991
301 1(35) S ()
Further, note that
gm.v)| 1 _ g |ImasY) _3V3 )
mal v T2 DR T [T e T
wp || 4 wp || 33 ,
u —:=a, Su < = b,.
meal v 1557 TR 80 2
So, we arrive at )
Mo = 0.3727 0.0605
227102393 0.019%4 |’
and
1.6326 0.1008
[— -1 =
' = Maa) [ 0.3984 1.0444 ]

This matrix has two eigenvalues A; = 0.4098, and 1, = —0.0177, which in both case, we have
Al < 1 and || < 1. Also rank(I — Mayo) = 2, and all member of (I — Myyo)™!, are nonnegative.
Thus, My., — 0. Hence all conditions of Theorem 3.1 are valid and the problem (4.1) has a unique
solution. Moreover, the data in Table 3, show that convergence of My, is independent of quantum
parameters (p, q). Also, to better understand this example, the graphs of functions m,n, and heatmap
of Table 3 are presented in Figures 1-3.

Table 3. Eignvalues of M., with different value of p, g.

P g T35 0,025 A A 4l |4l
025 02 2.2361 1.4953  0.7454 0.2991 0.4098 0.0177
03 0.1 1.2247 1.1067  0.4082 0.2213 0.2314 0.0128
0.47 0.18 1.2731 1.1283  0.4103 0.2257 0.2327 0.0129
0.7 0.59 2.5226 1.5883  0.8409 0.3177 0.4599 0.0189
091 0.81 3.0166 1.7368 1.0055 0.3474 0.5461 0.0208
AIMS Mathematics Volume 8, Issue 1, 1566-1591.



1583

Craph of m(t, u(p“t),v(p2t))

0.65

mlt,upt ), v{p2t))
o

2
)

Figure 1. The graph of m(z, u(p*'t), v(p®2t)) in Example 4.1.

Graph of n{t, u(p*t),v(p“1))

*?J.-&p{-i |".]

n{t, w{p i), w{p=t))

Figure 2. The graph of n(z, u(p®'t), v(p®t)) in Example 4.1.
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m heatmap of Table 3

40 1
Row ZScore

{

Number of Matrix

- I -
(0] (6] =<

A2

(p,q)-Gamma fuctions and eigenvalues

Figure 3. The heatmap of Table 3.

Example 4.2. Consider the following fractional (p, q)-boundary value problem

2u(Ev(—%)
3 3 87"\ 42
°D? H=—ult) - ———+11, re]0,8],
0= Y T e Y <1081
2u(PHv(—%)
e __l N 87" 442
D}T’%V(l‘)— 13\/’(4\5) —3+u2(§) +13, IE[O,S], (42)

u(0) =u'(0) =0, v(0)=+'(0)=0,

D, u4) =2D, u(l), D,,v(4)=3D,,v(1).

In this case we take (| = %, 0= %, T=1p= i, q= é, m=m=1andu, =2, u, = 3. Witha
simple computation, we obtain

3 7 3
a1 =03, a =0, b1=%/_, ALY

Then, we define

0.2236 0.4304
Moa = [ 0 0.2474 ]
which this yields
A1 =0.2236, A, =0.2474,
and

1.2880 0.7365
0 1.3287 |’

(I = Mpo)™' = [

AIMS Mathematics Volume 8, Issue 1, 1566—-1591.
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also

rank(I — Myyo) = 2.

From the above facts it can be concluded that, My, convergence to zero. Thus, all assumption
of Theorem 3.2 are hold and so the problem (4.2) has at least one solution. Moreover, the data in
Table 4, show that convergence of My, is independent of quantum parameters (p, q). Also, to better

understand this example, the graph of the function m and heatmap of Table 4 are presented in Figures
4 and 5.

Table 4. Eignvalues of M., with different value of p, g.

P a4 L5 1,,025 A A 4l |4l

025 02 2.2361 1.4953  0.7454 0.2991 0.2236 0.2474
03 0.1 1.2247 1.1067  0.4082 0.2213 0.1225 0.1830
047 0.18 1.2731 1.1283  0.4103 0.2257 0.1231 0.1867
0.7 0.59 2.5226 1.5883  0.8409 0.3177 0.2523 0.2628
091 0.81 3.0166 1.7368 1.0055 0.3474 0.3017 0.2873

Craph of m(t, u(p*t), v{p 1))

1

0
9

. 8
v(phet) u(phit)

5 7

Figure 4. The graph of m(z, u(p*'t), v(p®t)) in Example 4.2.
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m heatmap of Table 4

40 1
Row ZScore

{

Number of Matrix

N ~—
o] <

G1
A2

(p,q)-Gamma fuctions and eigenvalues

Figure S. The heatmap of Table 4.

5. Conclusions

In this work, we investigate the fractional (p, g)-difference equation under non-local boundary
conditions with a new method. We introduce the Lipchitzian matrix for our problem such that
elements of this matrix depend on the fractional order { and the quantum Gamma function I, ,({).
Then, using the fixed point theory and providing sufficient conditions for convergence to the zero of
the mentioned matrix, we will follow the theory of existence. Finally, we go to the numerical analysis
of our introduced technique to confirm its accuracy and validity. The data from the presented
examples indicate the independence of our method from the p and ¢ quantum parameters. This paper,
and the methods presented in it, can provide the basis for further study of generalized quantum
differential equations and the use of numerical techniques in providing sufficient conditions for the
existence of the solution.
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