In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a $ L^2(H^1)-L^2(L^2) $ posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a $ L^2(L^2)-L^2(L^2) $ posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.
Citation: Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang. A posteriori error estimates of hp spectral element method for parabolic optimal control problems[J]. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291
In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a $ L^2(H^1)-L^2(L^2) $ posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a $ L^2(L^2)-L^2(L^2) $ posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.
[1] | R. Ghanem, H. Sissaoui, A posteriori error estimate by a spectral method of an elliptic optimal control problem, J. Comput. Math. Optim., 2 (2006), 111–125. |
[2] | Y. Chen, Superconvergence of optimal control problems by rectangular mixed finite element methods, Math. Comput., 77 (2008), 1269–1291. https://doi.org/10.1090/S0025-5718-08-02104-2 doi: 10.1090/S0025-5718-08-02104-2 |
[3] | Y. Chen, W. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Mod., 3 (2006), 311–321. https://doi.org/10.1080/00207160601117354 doi: 10.1080/00207160601117354 |
[4] | Y. Chen, W. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comput. Appl. Math., 211 (2008), 76–89. https://doi.org/10.1016/j.cam.2006.11.015 doi: 10.1016/j.cam.2006.11.015 |
[5] | Y. Chen, Z. Lu, High efficient and accuracy numerical methods for optimal control problems, Science Press, Beijing, 2015. |
[6] | Y. Chen, Z. Lin, A posteriori error estimates of semidiscrete mixed finite element methods for parabolic optimal control problems, E. Asian J. Appl. Math., 5 (2015), 957–965. https://doi.org/10.4208/eajam.010314.110115a doi: 10.4208/eajam.010314.110115a |
[7] | A. Kröner, B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, Comput. Math. Appl., 2 (2009), 781–802. https://doi.org/10.1016/j.cam.2009.01.023 doi: 10.1016/j.cam.2009.01.023 |
[8] | Y. Chen, N. Yi, W. Liu, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703 |
[9] | L. Li, Z. Lu, W. Zhang, F. Huang, Y. Yang, A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem, J. Inequal. Appl., 1 (2018), 1–23. https://doi.org/10.1186/s13660-018-1729-4 doi: 10.1186/s13660-018-1729-4 |
[10] | R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342 |
[11] | J. L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971. |
[12] | J. L. Lions, E. Magenes, Non homogeneous boundary value problems and applications, Springer-Verlag, Berlin, 1972. |
[13] | W. Liu, J. Barrett, Error bounds for the finite element approximation some degenerate quasilinear parabolic equations and variational inequalities, Adv. Comput. Math., 1 (1993), 223–239. |
[14] | W. Liu, D. Tiba, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 22 (2001), 953–972. |
[15] | W. Liu, N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285–309. https://doi.org/10.1023/A:1014239012739 doi: 10.1023/A:1014239012739 |
[16] | W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497–521. https://doi.org/10.1007/s002110100380 doi: 10.1007/s002110100380 |
[17] | W. Liu, N. Yan, A posteriori error estimates for optimal control of stokes flows, SIAM J. Numer. Anal., 40 (2003), 1805–1869. |
[18] | Y. Tang, Y. Chen, Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems, Numer. Math.-Theory Me., 4 (2012), 573–591. https://doi.org/10.1017/S1004897900001069 doi: 10.1017/S1004897900001069 |
[19] | Z. Lu, S. Zhang, $L^\infty$-error estimates of rectangular mixed finite element methods for bilinear optimal control problem, Appl. Math. Comp., 300 (2017), 79–94. https://doi.org/10.1016/j.amc.2016.12.006 doi: 10.1016/j.amc.2016.12.006 |
[20] | J. M. Melenk, hp-interpolation of non-smooth functions, SIAM J. Numer. Anal., 43 (2005), 127–155. https://doi.org/10.1137/S0036142903432930 doi: 10.1137/S0036142903432930 |
[21] | A. T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54 (1984), 468–488. https://doi.org/10.1016/0021-9991(84)90128-1 doi: 10.1016/0021-9991(84)90128-1 |
[22] | L. R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483–493. https://doi.org/10.1090/S0025-5718-1990-1011446-7 doi: 10.1090/S0025-5718-1990-1011446-7 |
[23] | X. Xing, Y. Chen, $L^{\infty}$-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Mod., 5 (2008), 441–456. https://doi.org/10.1007/s11424-010-8015-y doi: 10.1007/s11424-010-8015-y |
[24] | X. Xing, Y. Chen, Error estimates of mixed methods for optimal control problems governed by parabolic equations, Int. J. Numer. Meth. Eng., 75 (2010), 735–754. https://doi.org/10.1002/nme.2289 doi: 10.1002/nme.2289 |
[25] | S. Boulaaras, Some new properties of asynchronous algorithms of theta scheme combined with finite elements methods for an evolutionary implicit 2-sided obstacle problem, Math. Meth. App., 40 (2017), 7231–7239. https://doi.org/10.1002/mma.4525 doi: 10.1002/mma.4525 |
[26] | S. Boulaaras, Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipation and logarithmic source terms, Alex. Eng. J., 4 (2020), 1059–1071. https://doi.org/10.1016/j.aej.2019.12.013 doi: 10.1016/j.aej.2019.12.013 |
[27] | S. Boulaaras, M. S. Touati Brahim, S. Bouzenada, A. Zarai, An asymptotic behavior and a posteriori error estimates for the generalized Schwartz method of advection-diffusion equation, Acta Math. Sci., 4 (2018), 1227–1244. https://doi.org/10.1016/S0252-9602(18)30810-5 doi: 10.1016/S0252-9602(18)30810-5 |
[28] | S. Boulaaras, M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indagat. Math., 24 (2013), 161–173. https://doi.org/10.1016/j.indag.2012.07.005 doi: 10.1016/j.indag.2012.07.005 |
[29] | L. Bonifacius, K. Pieper, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic time-optimal control problems, Numer. Math., 120 (2018), 345–386. https://doi.org/10.1007/s00211-011-0409-9 doi: 10.1007/s00211-011-0409-9 |
[30] | Z. Lu, X. Huang, A priori error estimates of mixed finite element methods for general linear hyperbolic convex optimal control problems, Abst. Appl. Anal., 7 (2014), 1–10. https://doi.org/10.1155/2014/547490 doi: 10.1155/2014/547490 |