Wind energy is one of the most significant renewable energy sources due to its widespread availability, low environmental impact, and great cost-effectiveness. The effective design of ideal wind energy extraction areas to generate electricity is one of the most critical issues in the exploitation of wind energy. The appropriate site selection for wind power plants is based on the concepts and criteria of sustainable environmental advancement, resulting in a low-cost and renewable energy source, as well as cost-effectiveness and job creation. The aim of this article is to introduce the idea of q-rung orthopair hesitant fuzzy rough set (q-ROHFRS) as a robust fusion of q-rung orthopair fuzzy set, hesitant fuzzy set, and rough set. A q-ROHFRS is a new approach towards modeling uncertainties in the multi-criteria decision making (MCDM). Various key properties of q-ROHFRS and some elementary operations on q-ROHFRSs are established. A list of novel q-rung orthopair hesitant fuzzy rough weighted geometric aggregation operators are developed on the basis of defined operational laws for q-ROHFRSs. Further, a decision making algorithm is developed to handle the uncertain and incomplete information in real word decision making problems. Then, a multi-attribute decision making method is established using q-rung orthopair hesitant fuzzy rough aggregation operators. Afterwards, a practical case study on evaluating the location of wind power plants is presented to validate the potential of the proposed technique. Further, comparative analysis based on the novel extended TOPSIS method is presented to demonstrate the capability of the proposed technique.
Citation: Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Choonkil Park. A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS[J]. AIMS Mathematics, 2022, 7(4): 5241-5274. doi: 10.3934/math.2022292
Wind energy is one of the most significant renewable energy sources due to its widespread availability, low environmental impact, and great cost-effectiveness. The effective design of ideal wind energy extraction areas to generate electricity is one of the most critical issues in the exploitation of wind energy. The appropriate site selection for wind power plants is based on the concepts and criteria of sustainable environmental advancement, resulting in a low-cost and renewable energy source, as well as cost-effectiveness and job creation. The aim of this article is to introduce the idea of q-rung orthopair hesitant fuzzy rough set (q-ROHFRS) as a robust fusion of q-rung orthopair fuzzy set, hesitant fuzzy set, and rough set. A q-ROHFRS is a new approach towards modeling uncertainties in the multi-criteria decision making (MCDM). Various key properties of q-ROHFRS and some elementary operations on q-ROHFRSs are established. A list of novel q-rung orthopair hesitant fuzzy rough weighted geometric aggregation operators are developed on the basis of defined operational laws for q-ROHFRSs. Further, a decision making algorithm is developed to handle the uncertain and incomplete information in real word decision making problems. Then, a multi-attribute decision making method is established using q-rung orthopair hesitant fuzzy rough aggregation operators. Afterwards, a practical case study on evaluating the location of wind power plants is presented to validate the potential of the proposed technique. Further, comparative analysis based on the novel extended TOPSIS method is presented to demonstrate the capability of the proposed technique.
[1] | K. T. Atanassov, Intuitionistic fuzzy sets, Springer-Verlag Berlin Heidelberg, 35 (1999), 1–137. https: //doi.org/10.1007/978-3-7908-1870-3_1 |
[2] | R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS method for multi-criteria group decision making based on intuitionistic fuzzy rough aggregation operators, IEEE Access, 9 (2021), 10199–10216. https://doi.org/10.1109/ACCESS.2021.3049605 doi: 10.1109/ACCESS.2021.3049605 |
[3] | Commission, world energy, technology, and climate policy outlook, energy, environment, and sustainable development' program, European commission's directorate-general for research, Brussels, 2003. |
[4] | A. Mostafa eipour, S. Sadeghi, M. Jahangiri, O. Nematollahi, A. R. Sabbagh, Investigation of accurate location planning for wind farm establishment: A case study, J. Eng. Des. Technol., 18 (2019), 821–845. https://doi.org/10.1108/JEDT-08-2019-0208 doi: 10.1108/JEDT-08-2019-0208 |
[5] | G. Rediske, J. C. M. Siluk, L. Michels, P. D. Rigo, C. B. Rosa, G. Cugler, Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil, Energy, 197 (2020), 117–167. https://doi.org/10.1016/j.energy.2020.117167 doi: 10.1016/j.energy.2020.117167 |
[6] | A. U. Rehman, M. H. Abidi, U. Umer, Y. S. Usmani, Multi-criteria decision-making approach for selecting wind energy power plant locations, Sustainability, 11 (2019), 6112. https://doi.org/10.3390/su11216112 doi: 10.3390/su11216112 |
[7] | E. S. Ari, C. Gencer, The use and comparison of a deterministic, a stochastic, and a hybrid multiple-criteria decision-making method for site selection of wind power plants: An application in Turkey, Wind Eng., 44 (2020), 60–74. https://doi.org/10.1177/0309524X19849831 doi: 10.1177/0309524X19849831 |
[8] | D. Liu, D. Peng, Z. Liu, The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making, Int. J. Intell. Syst., 34 (2019), 2104–2121. https://doi.org/10.1002/int.22133 doi: 10.1002/int.22133 |
[9] | Z. Pawlak, Rough sets, Int. J. Comput., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 |
[10] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[11] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. |
[12] | R. E. Bellmann, L. A. Zadeh, Decision making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141 |
[13] | A. Kandel, M. Schneider, Fuzzy sets and their applications to artificial intelligence, Adv. Comput., 28 (1989), 69–105. https://doi.org/10.1016/S0065-2458(08)60046-7 doi: 10.1016/S0065-2458(08)60046-7 |
[14] | K. P. Adlassnig, Fuzzy set theory in medical diagnosis, IEEE Trans. Syst. Man. Cybern., 16 (1986), 260–265. https://doi.org/10.1109/TSMC.1986.4308946 doi: 10.1109/TSMC.1986.4308946 |
[15] | D. J. Dubois, Fuzzy sets and systems: Theory and applications, Academic Press, 144 (1980). |
[16] | V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 |
[17] | J. Liu, M. Sun, Generalized power average operator of hesitant fuzzy numbers and its application in multiple attribute decision making, J. Comput. Inf., 9 (2013), 3051–3058. https://doi.org/10.5391/IJFIS.2014.14.3.181 doi: 10.5391/IJFIS.2014.14.3.181 |
[18] | M. Xia, Z. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002 |
[19] | Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678 |
[20] | Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353 |
[21] | H. Liao, Z. Xu, Extended hesitant fuzzy hybrid weighted aggregation operators and their application in decision making, Soft Comput., 19 (2015), 2551–2564. https://doi.org/10.1007/s00500-014-1422-6 doi: 10.1007/s00500-014-1422-6 |
[22] | P. F. Hsu, M. G. Hsu, Optimizing the information outsourcing practices of primary care medical organizations using entropy and TOPSIS, Qual. Quant., 42 (2008), 181–201. https://doi.org/10.1007/s11135-006-9040-8 doi: 10.1007/s11135-006-9040-8 |
[23] | C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, Lect. Notes Econ. Math., 186 (1981), 58–191. https://doi.org/10.1007/978-3-642-48318-9_3 doi: 10.1007/978-3-642-48318-9_3 |
[24] | G. H. Tzeng, J. J. Huang, Multiple attribute decision making, Meth. Appl., 186 (2011), 1–269. https://doi.org/10.1007/978-3-642-48318-9_3 doi: 10.1007/978-3-642-48318-9_3 |
[25] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[26] | Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678 |
[27] | Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353 |
[28] | G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 1 (2004), 45–61. https://doi.org/10.1109/TFUZZ.2003.822678 doi: 10.1109/TFUZZ.2003.822678 |
[29] | R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[30] | X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676 |
[31] | Y. Yang, H. Ding, Z. S. Chen, Y. L. Li, Note on extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 31 (2016), 68–72. https://doi.org/10.1002/int.21745 doi: 10.1002/int.21745 |
[32] | R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584 |
[33] | X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738 |
[34] | H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809 |
[35] | X. Gou, Z. Xu, P. Ren, The properties of continuous Pythagorean fuzzy information. Int. J. Intell. Syst., 31 (2016), 401–424. https://doi.org/10.1002/int.21788 |
[36] | X. Zhang, Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods, J. Inf. Sci., 330 (2016), 104–124. https://doi.org/10.1016/j.ins.2015.10.012 doi: 10.1016/j.ins.2015.10.012 |
[37] | S. Zeng, J. Chen, X. Li, A hybrid method for Pythagorean fuzzy multiple-criteria decision making, Int. J. Inf. Technol. Decis. Mak., 15 (2016), 403–422. https://doi.org/10.1142/S0219622016500012 doi: 10.1142/S0219622016500012 |
[38] | S. Ashraf, T. Mahmood, S. Abdullah, Q. Khan, Different approaches to multi-criteria group decision making problems for picture fuzzy environment, Bull. Brazilian Math. Soc., 50 (2019), 373–397. https://doi.org/10.1007/s00574-018-0103-y doi: 10.1007/s00574-018-0103-y |
[39] | S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision-making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1002/int.22062 doi: 10.1002/int.22062 |
[40] | S. Ashraf, S. Abdullah, A. Q. Almagrabi, A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19, Soft Comput., 2020, 1–17. https://doi.org/10.1007/s00500-020-05287-8 |
[41] | S. Ashraf, S. Abdullah, Emergency decision support modeling for COVID-19 based on spherical fuzzy information, Int. J. Intell. Syst., 35 (2020), 1601–1645. https://doi.org/10.1002/int.22262 doi: 10.1002/int.22262 |
[42] | S. Ashraf, S. Abdullah, S. Khan, Fuzzy decision support modeling for internet finance soft power evaluation based on sine trigonometric Pythagorean fuzzy information, J. Ambient. Intell. Humaniz. Comput., 12 (2021), 3101–3119. https://doi.org/10.1007/s12652-020-02471-4 doi: 10.1007/s12652-020-02471-4 |
[43] | S. Zeng, Pythagorean fuzzy multi-attribute group decision making with probabilistic information and OWA approach, Int. J. Intell. Syst., 32 (2017), 1136–1150. https://doi.org/10.1002/int.21886 doi: 10.1002/int.21886 |
[44] | M. S. A. Khan, S. Abdullah, A. Ali, N. Siddiqui, F. Amin, Pythagorean hesitant fuzzy sets and their application to group decision making with incomplete weight information, Int. J. Intell. Syst., 33 (2017), 3971–3985. https://doi.org/10.3233/JIFS-17811 doi: 10.3233/JIFS-17811 |
[45] | Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Making, 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5 |
[46] | S. Ashraf, S. Abdullah, Decision aid modeling based on sine trigonometric spherical fuzzy aggregation information, Soft Comput., 2021, 1–24. https://doi.org/10.1007/s00500-021-05712-6 |
[47] | A. B. Khoshaim, S. Abdullah, S. Ashraf, M. Naeem, Emergency decision-making based on q-rung orthopair fuzzy rough aggregation information, Comput. Mater. Contin., 2021, 4077–4094. https://doi.org/10.1155/2021/5520264 |
[48] | Z. Hao, Z. Xu, H. Zhao, Z. Su, Probabilistic dual hesitant fuzzy set and its application in risk evaluation, Knowl.-Based Syst., 127 (2017), 16–28. https://doi.org/10.1016/j.knosys.2017.02.033 doi: 10.1016/j.knosys.2017.02.033 |
[49] | J. Li, Z. X. Wang, Multi-attribute decision making based on prioritized operators under probabilistic hesitant fuzzy environments, Soft Comput., 23 (2019), 3853–3868. https://doi.org/10.1007/s00500-018-3047-7 doi: 10.1007/s00500-018-3047-7 |
[50] | W. Zhou, Z. Xu, Group consistency and group decision making under uncertain probabilistic hesitant fuzzy preference environment, J. Inf. Sci., 414 (2017), 276–288. https://doi.org/10.1016/j.ins.2017.06.004 doi: 10.1016/j.ins.2017.06.004 |
[51] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[52] | R. R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets, Inf. Fusion., 38 (2017), 65–73. https://doi.org/10.1016/j.inffus.2017.02.005 doi: 10.1016/j.inffus.2017.02.005 |
[53] | D. Liu, D. Peng, D. Z. Liu, The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making. Int. J. Intell. Syst., 34 (2019), 2104–2121, https://doi.org/10.1002/int.22133 |
[54] | J. Wang, P. Wang, G. Wei, C. Wei, J. Wu, Some power Heronian mean operators in multiple attribute decision-making based on q-rung orthopair hesitant fuzzy environment, J. Exp. Theor. Artif. Intell., 32 (2020), 909–937. https://doi.org/10.1080/0952813X.2019.1694592 doi: 10.1080/0952813X.2019.1694592 |
[55] | Z. Hussain, M. S. Yang, Entropy for hesitant fuzzy sets based on Hausdorff metric with construction of hesitant fuzzy TOPSIS, Int. J. Fuzzy Syst., 20 (2018), 2517–2533. https://doi.org/10.1007/s40815-018-0523-2 doi: 10.1007/s40815-018-0523-2 |
[56] | C. H. Su, K. T. K. Chen, K. K. Fan, Rough set theory based fuzzy TOPSIS on serious game design evaluation framework, Math. Probl. Eng., 2013, 407395. https://doi.org/10.1155/2013/407395 |
[57] | C. Khan, S. Anwar, S. Bashir, A. Rauf, A. Amin, Site selection for food distribution using rough set approach and TOPSIS method, Int. J. Intell. Syst., 29 (2015), 2413–2419. https://doi.org/10.3233/IFS-151941 doi: 10.3233/IFS-151941 |
[58] | J. Lu, Z. Zhao, Improved TOPSIS based on rough set theory for selection of suppliers, In 4th International Conference on Wireless Communications, 2008. https://doi.org/10.1109/WiCom.2008.1537 |
[59] | D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107 |
[60] | C. Cornelis, M. D. Cock, E. E. Kerre, Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge, Expert Syst., 20 (2003), 260–270. https://doi.org/0.1111/1468-0394.00250 |
[61] | L. Zhou, W. Z. Wu, On generalized intuitionistic fuzzy rough approximation operators, J. Inf. Sci., 178 (2008), 2448–2465. https://doi.org/10.1016/j.ins.2008.01.012 doi: 10.1016/j.ins.2008.01.012 |
[62] | J. Zhan, H. M. Malik, M. Akram, Novel decision-making algorithms based on intuitionistic fuzzy rough environment, Int. J. Mach. Learn. Cybe., 10 (2019), 1459–1485. https://doi.org/10.1007/s13042-018-0827-4 doi: 10.1007/s13042-018-0827-4 |
[63] | S. M. Yun, S. J. Lee, Intuitionistic fuzzy rough approximation operators, Int. J. Fuzzy Log. Intell., 15 (2015), 208–215. https://doi.org/10.5391/IJFIS.2015.15.3.208 doi: 10.5391/IJFIS.2015.15.3.208 |
[64] | C. Zhang, Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm, Int. J. Fuzzy Syst., 22 (2020), 1694–1715. https://doi.org/10.1007/s40815-020-00849-2 doi: 10.1007/s40815-020-00849-2 |
[65] | R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS method for multi-criteria group decision making based on intuitionistic fuzzy rough aggregation operators, IEEE Access, 9 (2021), 10199–10216. https://doi.org/10.1109/ACCESS.2021.3049605 doi: 10.1109/ACCESS.2021.3049605 |
[66] | B. Zhu, Z. Xu, Probability-hesitant fuzzy sets and the representation of preference relations, Technol. Econ. Dev. Econ., 24 (2018), 1029–1040. https://doi.org/10.3846/20294913.2016.1266529 doi: 10.3846/20294913.2016.1266529 |
[67] | Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Mak., 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5 |
[68] | H. Jiang, J. Zhan, B. Sun, J. C. R. Alcantud, An MADM approach to covering-based variable precision fuzzy rough sets: An application to medical diagnosis, Int. J. Mach. Learn. Cybe., 11 (2020), 2181–2207. https://doi.org/10.1007/s13042-020-01109-3 doi: 10.1007/s13042-020-01109-3 |
[69] | J. Zhan, H. Jiang, Y. Yao, Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS methods, J. Inf. Sci., 538 (2020), 314–336. https://doi.org/10.1016/j.ins.2020.06.006 doi: 10.1016/j.ins.2020.06.006 |
[70] | H. Jiang, J. Zhan, D. Chen, PROMETHEE II method based on variable precision fuzzy rough sets with fuzzy neighborhoods, Artif. Intell. Rev., 54 (2021), 1281–1319. https://doi.org/10.1007/s10462-020-09878-7 doi: 10.1007/s10462-020-09878-7 |
[71] | J. Zhan, H. Jiang, Y. Yao, Three-way multi-attribute decision-making based on outranking relations, IEEE Trans. Fuzzy Syst., 2020. https://doi.org/10.1109/TFUZZ.2020.3007423 |
[72] | H. Jiang, B. Q. Hu, A decision-theoretic fuzzy rough set in hesitant fuzzy information systems and its application in multi-attribute decision-making, J. Inf. Sci., 579 (2021), 103–127. https://doi.org/10.1016/j.ins.2021.07.094 doi: 10.1016/j.ins.2021.07.094 |