Citation: Xiangqi Zheng. On the extinction of continuous-state branching processes in random environments[J]. AIMS Mathematics, 2021, 6(1): 156-167. doi: 10.3934/math.2021011
[1] | M. Ba, E. Pardoux, Branching processes with interaction and a generalized Ray-Knight theorem, Annales de l'I.H.P. Probabilités et statistiques, 51 (2015), 1290-1313. |
[2] | V. Bansaye, J. C. P. Millan, C. Smadi, On the extinction of continuous state branching processes with catastrophes, Electron. J. Probab., 18 (2013), 1-31. |
[3] | V. Bansaye, M. Caballero, M. Sylvie, Scaling limits of general population processes-Wright-Fisher and branching processes in random environment, arXiv: 1802.02362, 2018. |
[4] | V. Bansaye, M. Sylvie, Stochastic Models for Structured Populations Scaling Limits and Long Time Behavior, Springer, 2015. |
[5] | D. R. Breininger, M. A. Burgman, B. M. Stith, Influence of habitat quality, catastrophes, and population size on extinction risk of the Florida scrub-jay, Wildlife Soc. B., 27 (1999), 810-822. |
[6] | R. Fang, Z. Li, Construction of continuous-state branching processes in varying environments, arXiv: 2002.09113, 2020. |
[7] | W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley and Sons, 1950. |
[8] | F. Galton, H. W. Watson, On the probability of the extinction of families, In: Mathematical Demography, Springer, Berlin, Heidelberg, 1977,399-406. |
[9] | H. He, Z. Li, W. Xu, Continuous-state branching processes in Lévy random environments, J. Theor. Probab., 31 (2018), 1952-1974. doi: 10.1007/s10959-017-0765-1 |
[10] | M. A. Kouritizin, K. Lê, D. Sezer, Laws of large numbers for supercritical branching Gaussian processes, Stoch. Proc. Appl., 129 (2019), 3463-3498. doi: 10.1016/j.spa.2018.09.011 |
[11] | M. A. Kouritizin, K. Lê, Long-time limits and occupation times for stable Fleming-Viot processes with decaying sampling rates, arXiv: 1705.10685, 2017. |
[12] | M. A. Kouritizin, Y. X. Ren, A strong law of large numbers for super-stable processes, Stoch. Proc. Appl., 124 (2014), 505-521. doi: 10.1016/j.spa.2013.08.009 |
[13] | K. Lê, Long-time asymptotic of stable Dawson-Watanabe processes in supercritical regimes, Acta Math. Sci., 39 (2019), 37-45. |
[14] | A. E. Kyprianou, J. C. Pardo, Continuous-state branching processes and self-similarity, J. Appl. Probab., 45 (2008), 1140-1160. doi: 10.1017/S0021900200005039 |
[15] | Z. Li, Asymptotic behavior of continuous time and state branching processes, J. Aust. Math. Soc., 68 (2000), 68-84. doi: 10.1017/S1446788700001580 |
[16] | Z. Li, Continuous-state branching processes with immigrations, In: From Probability to Finance, Springer, 2020, 1-69. |
[17] | Z. Li, W. Xu, Asymptotic results for exponential functionals of Lévy processes, Stoch. Proc. Appl., 128 (2018), 108-131. doi: 10.1016/j.spa.2017.04.005 |
[18] | Linda J. S. Allen, Stochastic Population and Epidemic Models: Persistence and Extinction, In: Mathematical Biosciences Institute Lecture, Springer, 2015. |
[19] | Y. Qin, X. Zheng, Stochastic equations and ergodicity for two-type continuous-state branching processes with immigration in Lévy random environments, Math. Method. Appl. Sci., 43 (2020), 8363-8378. doi: 10.1002/mma.6493 |
[20] | R. M. Ribeiro, L. Qin, L. L. Chavez, et al. Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection, J. Virol., 84 (2010), 6096-6102. doi: 10.1128/JVI.00127-10 |
[21] | D. Smith, N. Keyfitz, Mathematical Demography: Selected Papers, Springer Science & Business Media, 2013. |