Divorce is the dissolution of two parties' marriage. Separation and divorce are the major obstacles to the viability of a stable family dynamic. In this research, we employ a basic incidence functional as the source of interpersonal disagreement to build an epidemiological framework of divorce outbreaks via the fractal-fractional technique in the Atangana-Baleanu perspective. The research utilized Lyapunov processes to determine whether the two steady states (divorce-free and endemic steady state point) are globally asymptotically robust. Local stability and eigenvalues methodologies were used to examine local stability. The next-generation matrix approach also provides the fundamental reproducing quantity $ \bar{\mathbb{R}_{0}} $. The existence and stability of the equilibrium point can be assessed using $ \bar{\mathbb{R}}_0 $, demonstrating that counseling services for the separated are beneficial to the individuals' well-being and, as a result, the population. The fractal-fractional Atangana-Baleanu operator is applied to the divorce epidemic model, and an innovative technique is used to illustrate its mathematical interpretation. We compare the fractal-fractional model to a framework accommodating different fractal-dimensions and fractional-orders and deduce that the fractal-fractional data fits the stabilized marriages significantly and cannot break again.
Citation: Maysaa Al-Qurashi, Sobia Sultana, Shazia Karim, Saima Rashid, Fahd Jarad, Mohammed Shaaf Alharthi. Identification of numerical solutions of a fractal-fractional divorce epidemic model of nonlinear systems via anti-divorce counseling[J]. AIMS Mathematics, 2023, 8(3): 5233-5265. doi: 10.3934/math.2023263
Divorce is the dissolution of two parties' marriage. Separation and divorce are the major obstacles to the viability of a stable family dynamic. In this research, we employ a basic incidence functional as the source of interpersonal disagreement to build an epidemiological framework of divorce outbreaks via the fractal-fractional technique in the Atangana-Baleanu perspective. The research utilized Lyapunov processes to determine whether the two steady states (divorce-free and endemic steady state point) are globally asymptotically robust. Local stability and eigenvalues methodologies were used to examine local stability. The next-generation matrix approach also provides the fundamental reproducing quantity $ \bar{\mathbb{R}_{0}} $. The existence and stability of the equilibrium point can be assessed using $ \bar{\mathbb{R}}_0 $, demonstrating that counseling services for the separated are beneficial to the individuals' well-being and, as a result, the population. The fractal-fractional Atangana-Baleanu operator is applied to the divorce epidemic model, and an innovative technique is used to illustrate its mathematical interpretation. We compare the fractal-fractional model to a framework accommodating different fractal-dimensions and fractional-orders and deduce that the fractal-fractional data fits the stabilized marriages significantly and cannot break again.
[1] | N. A. Wimalasena, An analytical study of definitions of the term "marriage", Inter J. Humanities Soc. Sci., 6 (2016), 166–174. |
[2] | P. P. Gambrah, Y. Adzadu, Mathematical model of divorce epidemic in Ghana, Inter J. Stat. Appl. Math., 3 (2018), 395–401. |
[3] | M. Yeshiwork, K. Koye, A. Meseret, Prevalence, causes and consequences of divorce in Bahir Dar city, Ethiopia, Afr. J. Soc. Work, 9 (2019), 73–78. |
[4] | M. D. Bramlett, W. D. Mosher, Cohabitation, marriage, divorce, and remarriage in the United States, Vital Health Stat., 23 (2002), 1–93. |
[5] | A. J. Cherlin, Marriage, divorce, remarriage, Harvard University Press, 1992. |
[6] | A. J. Hawkins, B. J. Willoughby, W. J. Doherty, Reasons for divorce and openness to marital reconciliation, J. Divorce Remarriage, 53 (2012), 453–463. https://doi.org/10.1080/10502556.2012.682898 doi: 10.1080/10502556.2012.682898 |
[7] | J. Anderson, The impact of family structure on the health of children: effects of divorce, Linacre Quarterly, 81 (2014), 378–387. https://doi.org/10.1179/0024363914Z.00000000087 doi: 10.1179/0024363914Z.00000000087 |
[8] | J. T. Huang, Unemployment and family behavior in Taiwan, J. Fam. Econ. Iss., 24 (2003), 27–48. https://doi.org/10.1023/A:1022431003513 doi: 10.1023/A:1022431003513 |
[9] | R. Duato, L. Jódar, Mathematical modeling of the spread of divorce in Spain, Math. Comput. Model., 57 (2013), 1732–1737. https://doi.org/10.1016/j.mcm.2011.11.020 doi: 10.1016/j.mcm.2011.11.020 |
[10] | M. Lhous, M. Rachik, H. Laarabi, A. Abdelhak, Discrete mathematical modeling and optimal control of the marital status: the monogamous marriage case, Adv. Differ. Equ., 2017 (2017), 339. https://doi.org/10.1186/s13662-017-1390-0 doi: 10.1186/s13662-017-1390-0 |
[11] | J. N. H. J. N. H. Shah, P. M. Pandya, M. H. Satia, Global stability for Divorce in Arrange/Hove marriage due to extra marital affairs, Inter. J. Sci. Tech. Res., 2019. |
[12] | G. Bruze, M. Svarer, Y. Weiss, The dynamics of marriage and divorce, J. Labor Econ., 33 (2015), 123–170. |
[13] | Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5 |
[14] | Z. Ali, F. Rabiei, K. Shah, Z. A. Majid, Dynamics of SIR mathematical model for COVID-19 outbreak in Pakistan under fractal-fractional derivative, Fractals, 29 (2021), 2150120. https://doi.org/10.1142/S0218348X21501206 doi: 10.1142/S0218348X21501206 |
[15] | S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos, Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511 |
[16] | H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations, Math. Comput. Simulat., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009 |
[17] | S. Rashid, E. I Abouelmagd, S. Sultana, Y. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564 |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, San Diego, 2006. |
[19] | K. M. Owolabi, Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Phys. A, 523 (2019), 1072–1090. https://doi.org/10.1016/j.physa.2019.04.017 doi: 10.1016/j.physa.2019.04.017 |
[20] | S. Rashid, A. Khalid, S. Sultana, F. Jarad, K. M. Abualnaja, Y. S. Hamed, Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion, Res. Phys., 37 (2022), 105553. https://doi.org/10.1016/j.rinp.2022.105553 doi: 10.1016/j.rinp.2022.105553 |
[21] | S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: from caputo to Atangana-Baleanu, Chaos Solitons Fract., 122 (2019), 111–118. https://doi.org/10.1016/j.chaos.2019.03.020 doi: 10.1016/j.chaos.2019.03.020 |
[22] | O. A. Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space, Chaos Solitons Fract., 117 (2018), 161–167. https://doi.org/10.1016/j.chaos.2018.10.013 doi: 10.1016/j.chaos.2018.10.013 |
[23] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2 (2015), 73–85. |
[24] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[25] | Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201 |
[26] | Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020 |
[27] | S. Rezapour, J. K. Asamoah, A. Hussain, H. Ahmad, R. Banerjee, S. Etemad, et al., A theoretical and numerical analysis of a fractal-fractional two-strain model of meningitis, Results Phys., 39 (2022), 105775. https://doi.org/10.1016/j.rinp.2022.105775 doi: 10.1016/j.rinp.2022.105775 |
[28] | S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, A mathematical analysis on the new fractal-fractional model of second-hand smokers via the power law type kernel: numerical solutions, equilibrium points, and sensitivity analysis, J. Funct. Spaces, 2022 (2022), 1–26. https://doi.org/10.1155/2022/3553021 doi: 10.1155/2022/3553021 |
[29] | M. Al Qurashi, S. Rashid, S. Sultana, F. Jarad, A. M. Alsharif, Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory, AIMS Math., 7 (2022), 12587–12619. https://doi.org/10.3934/math.2022697 doi: 10.3934/math.2022697 |
[30] | S. Rashid, R. Ashraf, F. Jarad, Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels, AIMS Math., 7 (2022), 7936–7963. https://doi.org/10.3934/math.2022444 doi: 10.3934/math.2022444 |
[31] | S. Rashid, F. Jarad, A. G. Ahmad, K. M. Abualnaja, New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results Phys., 35 (2022), 105304. https://doi.org/10.1016/j.rinp.2022.105304 doi: 10.1016/j.rinp.2022.105304 |
[32] | H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of $CD4^+$ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth sscheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366 |
[33] | W. Sintunavarat, A. Turab, A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory, PLoS ONE, 17 (2022), e0270148. https://doi.org/10.1371/journal.pone.0270148 doi: 10.1371/journal.pone.0270148 |
[34] | S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-type inequality for control of a $\psi$-model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023. https://doi.org/10.3390/math10214023 doi: 10.3390/math10214023 |
[35] | W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Solitons Fract., 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199 |
[36] | R. Kanno, Representation of random walk in fractal space-time, Phys. A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6 |
[37] | W. Chen, H. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020 doi: 10.1016/j.camwa.2009.08.020 |
[38] | H. G. Sun, M. M. Meerschaert, Y. Zhang, J. Zhu, W. Chen, A fractal Richards' equation to capture the non-Boltzmann scaling of water transport in unsaturated media, Adv. Water Resour., 52 (2013), 292–295. https://doi.org/10.1016/j.advwatres.2012.11.005 doi: 10.1016/j.advwatres.2012.11.005 |
[39] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[40] | S. Rezapour, S. Etemad, İ. Avci, H. Ahmad, A. Hussain, A study on the fractal-fractional epidemic probability-based model of SARS-CoV-2 virus along with the Taylor operational matrix method for its Caputo version, J. Funct. Spaces, 2022 (2022), 1–33. https://doi.org/10.1155/2022/2388557 doi: 10.1155/2022/2388557 |
[41] | S. Etemad, İ. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511 |
[42] | Z. Ali, F. Rabiei, M. M. Rashidi, T. Khodadadi, A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions, Eur. Phys. J. Plus, 137 (2022), 395. https://doi.org/10.1140/epjp/s13360-022-02603-z doi: 10.1140/epjp/s13360-022-02603-z |
[43] | K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2022), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039 |
[44] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fract., 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020 |
[45] | J. F. Goméz-Aguilar, Chaos and multiple attarctors in a fractal-fractional Shinriki's oscillator model, Phys. A: Stat. Mech. Appl., 539 (2019), 122918. https://doi.org/10.1016/j.physa.2019.122918 doi: 10.1016/j.physa.2019.122918 |
[46] | S. Rashid, F. Jarad, A. G. Ahmad, A novel fractal-fractional order model for the understanding of an oscillatory and complex behavior of human liver with non-singular kernel, Results Phys., 35 (2022), 105292. https://doi.org/10.1016/j.rinp.2022.105292 doi: 10.1016/j.rinp.2022.105292 |
[47] | R. I. Gweryina1, F. S. Kaduna, M. Y. Kura, Qualitative analysis of a mathematical model of divorce epidemic with anti-divorce therapy, Eng. Appl. Sci. Lett., 4 (2021), 1–11. https://doi.org/10.30538/psrp-easl2021.0066 doi: 10.30538/psrp-easl2021.0066 |
[48] | P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[49] | M. Martcheva, An introduction to mathematical epidemiology, New York: Springer, 2015. |
[50] | E. U. Nwafor, C. J. Okoro, S. C. Inyama, A. Omame, H. I. Mbachu, Analysis of a mathematical vaccination model of an infectious measles disease, Futo J. Ser., 5 (2019), 168–188. |
[51] | L. C. Mpande, D. Kajunguri, E. A. Mpolya, Modeling and stability analysis for measles metapopulation model with vaccination, Appl. Comput. Math., 4 (2015), 431–444. https://doi.org/10.11648/j.acm.20150406.16 doi: 10.11648/j.acm.20150406.16 |
[52] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and nonsingular kernel: application to chaotic models, Eur. Phy. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0 |
[53] | A. Atangana, S. I. Araz, New numerical scheme with newton polynomial, 1 Ed., Elsevier, 2021. |