Divorce is the dissolution of two parties' marriage. Separation and divorce are the major obstacles to the viability of a stable family dynamic. In this research, we employ a basic incidence functional as the source of interpersonal disagreement to build an epidemiological framework of divorce outbreaks via the fractal-fractional technique in the Atangana-Baleanu perspective. The research utilized Lyapunov processes to determine whether the two steady states (divorce-free and endemic steady state point) are globally asymptotically robust. Local stability and eigenvalues methodologies were used to examine local stability. The next-generation matrix approach also provides the fundamental reproducing quantity ¯R0. The existence and stability of the equilibrium point can be assessed using ˉR0, demonstrating that counseling services for the separated are beneficial to the individuals' well-being and, as a result, the population. The fractal-fractional Atangana-Baleanu operator is applied to the divorce epidemic model, and an innovative technique is used to illustrate its mathematical interpretation. We compare the fractal-fractional model to a framework accommodating different fractal-dimensions and fractional-orders and deduce that the fractal-fractional data fits the stabilized marriages significantly and cannot break again.
Citation: Maysaa Al-Qurashi, Sobia Sultana, Shazia Karim, Saima Rashid, Fahd Jarad, Mohammed Shaaf Alharthi. Identification of numerical solutions of a fractal-fractional divorce epidemic model of nonlinear systems via anti-divorce counseling[J]. AIMS Mathematics, 2023, 8(3): 5233-5265. doi: 10.3934/math.2023263
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[3] | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824 |
[4] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[5] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[6] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[7] | Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079 |
[8] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[9] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[10] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
Divorce is the dissolution of two parties' marriage. Separation and divorce are the major obstacles to the viability of a stable family dynamic. In this research, we employ a basic incidence functional as the source of interpersonal disagreement to build an epidemiological framework of divorce outbreaks via the fractal-fractional technique in the Atangana-Baleanu perspective. The research utilized Lyapunov processes to determine whether the two steady states (divorce-free and endemic steady state point) are globally asymptotically robust. Local stability and eigenvalues methodologies were used to examine local stability. The next-generation matrix approach also provides the fundamental reproducing quantity ¯R0. The existence and stability of the equilibrium point can be assessed using ˉR0, demonstrating that counseling services for the separated are beneficial to the individuals' well-being and, as a result, the population. The fractal-fractional Atangana-Baleanu operator is applied to the divorce epidemic model, and an innovative technique is used to illustrate its mathematical interpretation. We compare the fractal-fractional model to a framework accommodating different fractal-dimensions and fractional-orders and deduce that the fractal-fractional data fits the stabilized marriages significantly and cannot break again.
The classical Hermite-Hadamard inequality is one of the most well-established inequalities in the theory of convex functions with geometrical interpretation and it has many applications. This inequality may be regarded as a refinement of the concept of convexity. Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable refinements and generalizations have been studied [1,2].
The importance of the study of set-valued analysis from a theoretical point of view as well as from their applications is well known. Many advances in set-valued analysis have been motivated by control theory and dynamical games. Optimal control theory and mathematical programming were an engine driving these domains since the dawn of the sixties. Interval analysis is a particular case and it was introduced as an attempt to handle interval uncertainty that appears in many mathematical or computer models of some deterministic real-world phenomena.
Furthermore, a few significant inequalities like Hermite-Hadamard and Ostrowski type inequalities have been established for interval valued functions in recent years. In [3,4], Chalco-Cano et al. established Ostrowski type inequalities for interval valued functions by using Hukuhara derivatives for interval valued functions. In [5], Román-Flores et al. established Minkowski and Beckenbach's inequalities for interval valued functions. For other related results we refer to the readers [6].
In this paper, we establish Hermite-Hadamard type inequalities and He's inequality for interval-valued exponential type pre-invex functions in the Riemann-Liouville interval-valued fractional operator settings.
We begin with recalling some basic concepts and notions in the convex analysis.
Let the space of all intervals of ℜ is ℜc and Λ∈ℜc given by
Λ1=[Λ↔,↔Λ]={v∈ℜ|Λ↔<v<↔Λ},Λ↔,↔Λ∈ℜ. |
Various binary operations are given as follows [7]:
Scalar multiplication: τ∈ℜ,
τ.Λ1={[τΛ↔,τ↔Λ],if0≤τ,0,ifτ=0,[τ↔Λ,τΛ↔],ifτ≤0. |
Difference, addition, product and reciprocal for Λ1,Λ2∈ℜc are respectively given by
Λ1−Λ2=[Λ1↔,↔Λ1]−[Λ2↔,↔Λ2]=[Λ1↔−Λ2↔,↔Λ1−↔Λ2],Λ1+Λ2=[Λ1↔,↔Λ1]+[Λ2↔,↔Λ2]=[Λ1↔+Λ2↔,↔Λ1+↔Λ2],Λ1×Λ2=[min{Λ1↔Λ2↔,↔Λ1Λ2↔,Λ1↔↔Λ2,↔Λ1↔Λ2},max{Λ1↔Λ2↔,↔Λ1Λ2↔,Λ1↔↔Λ2,↔Λ1↔Λ2}]={uv|u∈Λ1,v∈Λ2},1Λ={1v1|0≠v1∈Λ}=[1Λ↔,1↔Λ],Λ1.1Λ2={u.1v|u∈Λ1,0≠v∈Λ2}=[Λ1↔.1↔Λ2,↔Λ1.1↔Λ2]. |
Let ℜΛ,ℜ+Λandℜ−Λ denote the collection of all closed intervals of ℜ, the collection of all positive intervals of ℜ and the collection of all negative intervals of ℜ respectively. In this paper, we examine a few algebraic properties of interval arithmetic.
Definition 2.1. [7] A mapping Ω is called an interval-valued function of υ on [a1,b1] if it assigns a nonempty interval to every v∈[a1,b1], that is
Ω(v)=[↔Ω(v),Ω↔(v)], | (2.1) |
where ↔Ω(υ)andΩ↔(υ) are both real valued functions.
Consider any finite ordered subset ∁ be the partition of [a1,b1], that is
∁:a1=a1,...,an=b1. |
The mesh of ∁ is
mesh(∁)=max{ai+1−ai;i=1,...,n}. |
The Riemann sum of Ω:[a1,b1]→ℜΛ can be defined by
˜S(Ω,∁,c)=Σni=1Ω(di)(ai+1−ai), |
where mesh(∁)<c.
Definition 2.2. [8] A mapping Ω:[a1,b1]→ℜΛ is called an interval-Riemann integrable on [a1,b1]if∃Λ∈ℜΛ such that for every δ>0 satisfying
d(˜S(Ω,∁,c),Λ)<δ, |
we have
Λ1=(IR)∫b1a1Ω(v)dv. | (2.2) |
Lemma 2.1. [9] Let Ω:[a1,b1]→ℜΛ be an interval-valued function as in (2.1), then it is interval-Riemann integrable if and only if
(IR)∫b1a1Ω(v)dv=[(R)∫b1a1↔Ω(v)dv,(R)∫b1a1Ω↔(v)dv]. |
In simple words, Ω is interval-Riemann integrable if and only if ↔Ω(v)andΩ↔(v) are both Riemann integrable functions.
Definition 2.3. [10] Let Ω∈L1[a1,b1], then the Riemann-Liouville fractional integrals of order m>0 with 0≤a1 are defined by
Ima+1Ω(v)=1Γ(m)∫va1(v−r)m−1Ω(r)dr,v>a1, | (2.3) |
Imb−1Ω(v)=1Γ(m)∫b1v(r−v)m−1Ω(r)dr,v<b1. | (2.4) |
Definition 2.4. [11,12] Let Ω:[a1,b1]→ℜΛ be an interval-valued, interval-Riemann integrable function as in (2.1), then the interval Riemann-Liouville fractional integrals of order m>0 with 0≤a1 are defined by
Ima+1Ω(v)=1Γ(m)(IR)∫va1(v−r)m−1Ω(r)dr,v>a1, | (2.5) |
Imb−1Ω(v)=1Γ(m)(IR)∫b1v(r−v)m−1Ω(r)dr,v<b1. | (2.6) |
Corollary 2.1. [12] Let Ω:[a1,b1]→ℜΛ be an interval-valued function as in (2.1) such that ↔Ω(v)andΩ↔(v) are Riemann integrable functions, then
Ima+1Ω(v)=[Ima+1Ω↔(v),Ima+1↔Ω(v)], |
Imb−1Ω(v)=[Imb−1Ω↔(v),Imb−1↔Ω(v)]. |
Definition 2.5. [13] A set Λ⊂ℜn with respect to a vector function η:ℜn×ℜn→ℜn is called an invex set if
b1+τη(a1,b1)∈Λ,∀a1,b1∈Λ,τ1∈[0,1]. |
Definition 2.6. [13] A function Ω on the invex set Λ with respect to a vector function η:Λ×Λ→ℜn is called pre-invex function if
Ω(b1+τη(a1,b1))≤(1−τ)Ω(b1)+τΩ(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.7) |
Lemma 2.2. [14,15] If Λ is open and η:Λ×Λ→ℜ, then ∀a1,b1∈Λ,τ,τ1,τ2∈[0,1], we have
η(b1,b1+τη(a1,b1))=−τη(a1,b1), | (2.8) |
η(a1,b1+τη(a1,b1))=(1−τ)η(a1,b1), | (2.9) |
η(b1+τ2η(a1,b1),b1+τ1η(a1,b1))=(τ2−τ1)η(a1,b1). | (2.10) |
In [16], Noor presented Hermite-Hadamard-inequality for pre-invex function, as follows:
Ω(2a1+η(b1,a1)2)≤1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv≤Ω(a1)+Ω(b1)2. |
Definition 2.7. [15] Let us consider an interval-valued function Ω on the set Λ, then Ω is pre-invex interval valued function with respect to η on an invex set Λ⊂ℜn with respect to a vector function η:Λ×Λ→ℜn if
Ω(b1+τ1η(a1,b1))⊇(1−τ1)Ω(b1)+τ1Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.11) |
Taking motivation from the exponential type convexity proposed in [17], we introduce the following notion:
Definition 2.8. A function Ω on the invex set Λ is called exponential-type pre-invex function with respect to a vector function η:Λ×Λ→ℜn if
Ω(b1+τ1η(a1,b1))≤(e(1−τ1)−1)Ω(b1)+(eτ1−1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.12) |
It is important to note that a pre-invex function need not to be convex function. For example, the function f(x)=−|x| is not a convex function but it is a pre-invex function with respect to η, where
η(v,u)={u−v,ifu≤0,v≤0,v≥0,u≥0,v−u,otherwise. |
Theorem 2.1. Let Ω:[a1,b1]→ℜ be an exponential-type pre-invex function with respect to a vector function η:Λ×Λ→ℜn. If a1<b1 and Ω∈L[a1,b1], then we have
12(e12−1)Ω(a1+12η(b1,a1))≤1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv≤(e−2)[Ω(a1)+Ω(b1)]. |
Proof. At first, from exponential-type-pre-invexity of Ω, we have
Ω(a1+12η(b1,a1))=Ω(12[b1+τ1η(a1,b1)]+12[a1+τ1η(b1,a1)])≤(e12−1)[Ω(b1+τ1η(a1,b1))+Ω(a1+τ1η(b1,a1))]. |
Integrating the above inequality with respect to τ1∈[0,1] yields
Ω(a1+12η(b1,a1))≤(e12−1)(∫10Ω(b1+τ1η(a1,b1))dτ1+∫10Ω(a1+τ1η(b1,a1))dτ1)=2(e12−1)η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv. |
Now, taking v=b1+τ1η(a1,b1) gives
1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv=∫10Ω(b1+τ1η(a1,b1))dτ1≤∫10{(eτ1−1)Ω(a1)+(e(1−τ1)−1)Ω(b1)}dτ1=(e−2)[Ω(a1)+Ω(b1)]. |
This completes the proof.
By merging the concepts of pre-invexity and exponential type pre-invexity, we propose the following notion:
Definition 2.9. Let Λ⊂ℜn be an invex set with respect to a vector function η:Λ×Λ→ℜn. The interval valued function Ω on the set Λ is exponential-type pre-invex interval valued function with respect to η if
Ω(b1+τ1η(a1,b1))⊇(e(1−τ1)−1)Ω(b1)+(eτ1−1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.13) |
Remark 2.1. In Definition 2.9, by taking h(τ1)=eτ1−1, where h:[0,1]⊂[a1,b1]→ℜ and h≠0, then we get h-pre-invex interval valued function with respect to η, that is
Ω(b1+τ1η(a1,b1))⊇h(1−τ1)Ω(b1)+h(τ1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.14) |
Remark 2.2. Let Λ⊂ℜn be an invex set with respect to a vector function η:ℜn×ℜn→ℜn. The interval valued function Ω on the set Λ is exponential-type-pre-invex function with respect to η if and only if ↔Ω,Ω↔ are exponential-type pre-invex functions with respect to η, that is
↔Ω(b1+τ1η(a1,b1))≤(e(1−τ1)−1)↔Ω(b1)+(eτ1−1)↔Ω(a1),∀a1,b1∈Λ,τ1∈[0,1], | (2.15) |
Ω↔(b1+τ1η(a1,b1))≤(e(1−τ1)−1)Ω↔(b1)+(eτ1−1)Ω↔(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.16) |
Remark 2.3. If ↔Ω(v)=Ω↔(v), then we get (2.12).
Remark 2.4. Since τ1≤eτ1−1 and 1−τ1≤e1−τ1−1 for all τ1∈[0,1], so every nonnegative pre-invex interval valued function with respect to η is also exponential-type pre-invex interval valued function with respect to η.
In this section, we establish fractional Hermite-Hadamard type inequality for interval-valued exponential type pre-invex. The family of Lebesgue measurable interval-valued functions is denoted by L([v1,v2],ℜ0).
Theorem 3.1. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω:[a1,a1+η(b1,a1)]→ℜ is an exponential type pre-invex interval-valued function such that Ω∈L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)
1(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇mP(Ω(c1+η(d1,c1))+Ω(c1)), | (3.1) |
where
P=−1(m+1)(−1)m[(em+e)(−1)mΓ(m+1,1)+(−m−1)Γ(m+1,−1)+((−em−e)(−1)m+m+1)Γ(m+1)+2(−1)m]. | (3.2) |
Proof. Since Ω is an exponential type pre-invex interval-valued function, so
1(e12−1)Ω(a1+12η(b1,a1))⊇[Ω(a1)+Ω(b1)]. |
Taking a1=c1+(1−τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives
1(e12−1)Ω(c1+(1−τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1−τ1)η(d1,c1)))⊇[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))], |
implies
1(e12−1)Ω(c1+12η(d1,c1))⊇[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. |
By multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1, we get
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1⊇(IR)∫10τm−11[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]dτ1, |
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1=[(R)∫10τm−111(e12−1)Ω↔(c1+12η(d1,c1))dτ1,(R)∫10τm−111(e12−1)↔Ω(c1+12η(d1,c1))dτ1], |
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1=[1m(e12−1)Ω↔(c1+12η(d1,c1)),1m(e12−1)↔Ω(c1+12η(d1,c1))]=1m(e12−1)Ω(c1+12η(d1,c1)), | (3.3) |
(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1))=[1ηm(d1,c1)(R)∫c1+(τ1)η(d1,c1)c(i−c)m−1Ω↔(i)di,1ηm(d1,c1)(R)∫c1+(τ1)η(d1,c1)c(i−c)m−1↔Ω(i)di], |
(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω↔(c1),Im(c1+η(d1,c1))−↔Ω(c1)]=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))−Ω(c1). | (3.4) |
Similarly
(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Imc+1Ω↔(c1+η(d1,c1)),Imc+1↔Ω(c1+η(d1,c1))]=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)). | (3.5) |
From (3.3)–(3.5), we get
1m(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]. | (3.6) |
Now, from the interval valued exponential type pre-invexity of Ω, we have
Ω(c1+τ1η(d1,c1))=Ω(c1+η(d1,c1)+(1−τ1)η(c1,c1+η(d1,c1)))⊇(eτ1−1)Ω(c1+η(d1,c1))+(e(1−τ1)−1)Ω(c1). | (3.7) |
Similarly
Ω(c1+(1−τ1)η(d1,c1))=Ω(c1+η(d1,c1)+(τ1)η(c1,c1+η(d1,c1)))⊇(e(1−τ1)−1)Ω(c1+η(d1,c1))+(eτ1−1)Ω(c1). | (3.8) |
Thus, by adding (3.7) and (3.8), we get
Ω(c1+τ1η(d1,c1))+Ω(c1+(1−τ1)η(d1,c1))⊇[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1)). |
By multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1, we get
(IR)∫10τm−11Ω(c1+τ1η(d1,c1))dτ1+(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1))dτ1⊇(IR)∫10τm−11[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1))dτ1. |
Now, from (3.2) we get
(IR)∫10τm−11[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1))dτ1=[(R)∫10τm−11[eτ1+e(1−τ1)−2](Ω↔(c1+η(d1,c1))+Ω↔(c1))dτ1,(R)∫10τm−11[eτ1+e(1−τ1)−2](↔Ω(c1+η(d1,c1))+↔Ω(c1))dτ1]=[P(Ω↔(c1+η(d1,c1))+Ω↔(c1)),P(↔Ω(c1+η(d1,c1))+↔Ω(c1))]=P(Ω(c1+η(d1,c1))+Ω(c1)). | (3.9) |
Also from (3.4), (3.5) and (3.9), we get
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇P(Ω(c1+η(d1,c1))+Ω(c1)). | (3.10) |
Combining (3.6) and (3.10), we get
1(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇mP(Ω(c1+η(d1,c1))+Ω(c1)). |
Corollary 3.1. If ↔Ω(v)=Ω↔(v), then (3.1) leads to the following fractional inequality for exponential type pre-invex function:
1(e12−1)Ω(c1+12η(d1,c1))≤Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]≤mP(Ω(c1+η(d1,c1))+Ω(c1)). |
Theorem 3.2. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)]→ℜ are exponential type pre-invex interval-valued functions such that Ω,Ω1∈L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]⊇P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)), | (3.11) |
where
P1=e2Γ(m)−e2Γ(m,2)2m+2eΓ(m,1)+2Γ(m,−1)−2Γ(m)(−1)m+Γ(m)−Γ(m,−2)(−1)m⋅2m−2eΓ(m)+2m, | (3.12) |
P2=eΓ(m,1)+Γ(m,−1)(−1)m−Γ(m)(−1)m−eΓ(m)+em+1m, | (3.13) |
Υ1(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)], | (3.14) |
and
Υ2(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.15) |
Proof. Since ΩandΩ1 are exponential type pre-invex interval-valued functions, so we have
Ω(a1+τ1η(b1,a1))=Ω(a1+η(b1,a1)+(1−τ1)η(a1,a1+η(b1,a1)))⊇(eτ1−1)Ω(a1+η(b1,a1))+(e(1−τ1)−1)Ω(a1) |
and
Ω1(a1+τ1η(b1,a1))=Ω1(a1+η(b1,a1)+(1−τ1)η(a1,a1+η(b1,a1)))⊇(eτ1−1)Ω1(a1+η(b1,a1))+(e(1−τ1)−1)Ω1(a1). |
Since Ω,Ω1∈ℜ+Λ, so
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))⊇(eτ1−1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(e(1−τ1)−1)2Ω(a1).Ω1(a1)+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.16) |
Similarly, we have
Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇(e(1−τ1)−1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(eτ1−1)2Ω(a1).Ω1(a1)+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.17) |
Adding (3.16) and (3.17) yields
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇[(e(1−τ1)−1)2+(eτ1−1)2][Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]+2(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. |
From (3.14) and (3.15), we have
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))+2(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1)). |
Multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1 gives
(IR)∫10τm−11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1+(IR)∫10τm−11Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))dτ1⊇(IR)∫10τm−11[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))dτ1+2(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1))dτ1. |
So
(IR)∫10τm−11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))−Ω(c1).Ω1(c1) |
and
(IR)∫10τm−11Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1)). |
From (3.12) and (3.13), we get
(IR)∫10τm−11[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))dτ1=P1Υ1(a1,a1+η(b1,a1)) |
and
(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1))dτ1=P2Υ2(a1,a1+η(b1,a1)). |
Thus,
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]⊇P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)). |
Corollary 3.2. If ↔Ω(v)=Ω↔(v), then (3.11) leads to the following fractional inequality for exponential type pre-invex function:
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]≤P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)). |
Theorem 3.3. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)]→ℜ are exponential type pre-invex interval-valued functions such that Ω,Ω1∈L[a1,a1+η(b1,a1)] and m>0, then from (3.12)–(3.15), we have (considering Lemma 2.2 holds)
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. | (3.18) |
Proof. Since Ω is an exponential type pre-invex interval-valued function, so we have
Ω(a1+12η(b1,a1))⊇(e12−1)[Ω(a1)+Ω(b1)]. |
Taking a1=c1+(1−τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives
Ω(c1+(1−τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1−τ1)η(d1,c1)))⊇(e12−1)[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))], |
implies
Ω(c1+12η(d1,c1))⊇(e12−1)[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. | (3.19) |
Similarly
Ω1(c1+12η(d1,c1))⊇(e12−1)[Ω1(c1+(1−τ1)η(d1,c1))+Ω1(c1+(τ1)η(d1,c1))]. | (3.20) |
Multiplying (3.19) and (3.20) gives
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. | (3.21) |
Since Ω,Ω1∈ℜ+Λ, are exponential type pre-invex interval-valued functions for τ1∈[0,1], so we have
Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))⊇(e(1−τ1)−1)2Ω(a1+η(b1,a1)).Ω1(a1)+(eτ1−1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. | (3.22) |
Similarly
Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))⊇(eτ1−1)2Ω(a1+η(b1,a1)).Ω1(a1)+(e(1−τ1)−1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. | (3.23) |
Adding (3.22) and (3.23) yields
Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))⊇[(eτ1−1)2+(e(1−τ1)−1)2](Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1)))+2(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. |
Now from (3.21), we can write
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[[(eτ1−1)2+(e(1−τ1)−1)2]Υ2(a1,a1+η(b1,a1))+2(eτ1−1)(e(1−τ1)−1)Υ1(a1,a1+η(b1,a1))+Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. |
Multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1 yields
(IR)∫10τm−11Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))dτ1⊇(e12−1)2[(IR)∫10τm−11[(eτ1−1)2+(e(1−τ1)−1)2]Υ2(a1,a1+η(b1,a1))dτ1+2(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ1(a1,a1+η(b1,a1))dτ1+(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))dτ1+(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))dτ1]. |
Thus from (3.12)–(3.15), we get
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. |
Corollary 3.3. If ↔Ω(v)=Ω↔(v), then (3.18) leads to the following fractional inequality for exponential type pre-invex function:
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))≤(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. |
In this section, we establish Hermite-hadamard type inequality in the setting of the He's fractional derivatives introduced in [18].
Definition 4.1. Let Ω be an L1 function defined on an interval [0,n1]. Then the k1-th He's fractional derivative of Ω(n1) is defined by
Ik1n1Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω(τ1)dτ1. |
The interval He's fractional derivative based on left and right end point functions can be defined by
Ik1n1Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω(τ1)dτ1=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1[Ω↔(τ1),↔Ω(τ1)]dτ1,n>n1, |
where
Ik1n1Ω↔(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω↔(τ1)dτ1,n>n1 | (4.1) |
and
Ik1n1↔Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1↔Ω(τ1)dτ1,n>n1. | (4.2) |
Theorem 4.1. Let Ω:[n1,n2]→ℜ be an exponential type pre-invex interval-valued function defined on [n1,n2]⊂Λ, where Λ is an open invex set with respect to η:Λ×Λ→ℜ and Ω:[n1,n2]⊂ℜ→ℜ+c is given by Ω(n)=[Ω↔(n),↔Ω(n)] for all n∈[n1,n2]. If Ω∈L1([n1,n2],ℜ), then
(−1)i−k1−1Ω(n12)⊇(e12−1)nk1ni−k12[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. | (4.3) |
Proof. Let Ω:[n1,n2]→ℜ be an exponential type pre-invex interval-valued function defined on [n1,n2], then
Ω(n1+12η(n2,n1))⊇(e12−1)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))] |
and
Ω↔(n1+12η(n2,n1))≤(e12−1)[Ω↔(n2+τ1η(n1,n2))+Ω↔(n1+τ1η(n2,n1))]. |
Taking n2=0,0≤n1 and multiplying by (τ1−n)i−k1−1Γ(i−k1), we get
(τ1−n)i−k1−1Γ(i−k1)Ω↔(n12)≤(e12−1)(τ1−n)i−k1−1Γ(i−k1)[Ω↔((1−τ1)n1)+Ω↔(τ1n1)]. |
Integrating with respect to τ1 over [0,n1] gives
Ω↔(n12)1Γ(i−k1)∫n10(τ1−n)i−k1−1dτ1≤(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔((1−τ1)n1)dτ1+(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔(τ1n1)dτ1, |
implies
Ω↔(n12)(−1)i−k1−1ni−k1Γ(i−k1)≤(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔((1−τ1)n1)dτ1+(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔(τ1n1)dτ1. |
Getting i-th derivative on both sides and using (4.1), we get
(−1)i−k1−1Ω↔(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ↔((1−n)b)+Ik1nbΩ↔(nb)]. |
Similarly
(−1)i−k1−1↔Ω(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)b↔Ω((1−n)b)+Ik1nb↔Ω(nb)]. |
Thus, we can write
(−1)i−k1−1[Ω↔(n12),↔Ω(n12)]⊇(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)b[Ω↔((1−n)b),↔Ω((1−n)b)]+Ik1nb[Ω↔(nb),↔Ω(nb)]]. |
So,
(−1)i−k1−1Ω(n12)⊇(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. |
Corollary 4.1. If ↔Ω(v)=Ω↔(v), then (4.3) leads to the following fractional inequality for exponential type pre-invex function:
(−1)i−k1−1Ω(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. |
In this paper we studied the interval-valued exponential type pre-invex functions. We established He's and Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in the setting of Riemann-Liouville interval-valued fractional operator.
This work was sponsored in part by Henan Science and Technology Project of China (No:182102110292).
The author declares no conflict of interest.
[1] | N. A. Wimalasena, An analytical study of definitions of the term "marriage", Inter J. Humanities Soc. Sci., 6 (2016), 166–174. |
[2] | P. P. Gambrah, Y. Adzadu, Mathematical model of divorce epidemic in Ghana, Inter J. Stat. Appl. Math., 3 (2018), 395–401. |
[3] | M. Yeshiwork, K. Koye, A. Meseret, Prevalence, causes and consequences of divorce in Bahir Dar city, Ethiopia, Afr. J. Soc. Work, 9 (2019), 73–78. |
[4] | M. D. Bramlett, W. D. Mosher, Cohabitation, marriage, divorce, and remarriage in the United States, Vital Health Stat., 23 (2002), 1–93. |
[5] | A. J. Cherlin, Marriage, divorce, remarriage, Harvard University Press, 1992. |
[6] |
A. J. Hawkins, B. J. Willoughby, W. J. Doherty, Reasons for divorce and openness to marital reconciliation, J. Divorce Remarriage, 53 (2012), 453–463. https://doi.org/10.1080/10502556.2012.682898 doi: 10.1080/10502556.2012.682898
![]() |
[7] |
J. Anderson, The impact of family structure on the health of children: effects of divorce, Linacre Quarterly, 81 (2014), 378–387. https://doi.org/10.1179/0024363914Z.00000000087 doi: 10.1179/0024363914Z.00000000087
![]() |
[8] |
J. T. Huang, Unemployment and family behavior in Taiwan, J. Fam. Econ. Iss., 24 (2003), 27–48. https://doi.org/10.1023/A:1022431003513 doi: 10.1023/A:1022431003513
![]() |
[9] |
R. Duato, L. Jódar, Mathematical modeling of the spread of divorce in Spain, Math. Comput. Model., 57 (2013), 1732–1737. https://doi.org/10.1016/j.mcm.2011.11.020 doi: 10.1016/j.mcm.2011.11.020
![]() |
[10] |
M. Lhous, M. Rachik, H. Laarabi, A. Abdelhak, Discrete mathematical modeling and optimal control of the marital status: the monogamous marriage case, Adv. Differ. Equ., 2017 (2017), 339. https://doi.org/10.1186/s13662-017-1390-0 doi: 10.1186/s13662-017-1390-0
![]() |
[11] | J. N. H. J. N. H. Shah, P. M. Pandya, M. H. Satia, Global stability for Divorce in Arrange/Hove marriage due to extra marital affairs, Inter. J. Sci. Tech. Res., 2019. |
[12] | G. Bruze, M. Svarer, Y. Weiss, The dynamics of marriage and divorce, J. Labor Econ., 33 (2015), 123–170. |
[13] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
![]() |
[14] |
Z. Ali, F. Rabiei, K. Shah, Z. A. Majid, Dynamics of SIR mathematical model for COVID-19 outbreak in Pakistan under fractal-fractional derivative, Fractals, 29 (2021), 2150120. https://doi.org/10.1142/S0218348X21501206 doi: 10.1142/S0218348X21501206
![]() |
[15] |
S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos, Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
![]() |
[16] |
H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations, Math. Comput. Simulat., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009
![]() |
[17] |
S. Rashid, E. I Abouelmagd, S. Sultana, Y. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
![]() |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, San Diego, 2006. |
[19] |
K. M. Owolabi, Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Phys. A, 523 (2019), 1072–1090. https://doi.org/10.1016/j.physa.2019.04.017 doi: 10.1016/j.physa.2019.04.017
![]() |
[20] |
S. Rashid, A. Khalid, S. Sultana, F. Jarad, K. M. Abualnaja, Y. S. Hamed, Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion, Res. Phys., 37 (2022), 105553. https://doi.org/10.1016/j.rinp.2022.105553 doi: 10.1016/j.rinp.2022.105553
![]() |
[21] |
S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: from caputo to Atangana-Baleanu, Chaos Solitons Fract., 122 (2019), 111–118. https://doi.org/10.1016/j.chaos.2019.03.020 doi: 10.1016/j.chaos.2019.03.020
![]() |
[22] |
O. A. Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space, Chaos Solitons Fract., 117 (2018), 161–167. https://doi.org/10.1016/j.chaos.2018.10.013 doi: 10.1016/j.chaos.2018.10.013
![]() |
[23] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2 (2015), 73–85. |
[24] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[25] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201
![]() |
[26] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020
![]() |
[27] |
S. Rezapour, J. K. Asamoah, A. Hussain, H. Ahmad, R. Banerjee, S. Etemad, et al., A theoretical and numerical analysis of a fractal-fractional two-strain model of meningitis, Results Phys., 39 (2022), 105775. https://doi.org/10.1016/j.rinp.2022.105775 doi: 10.1016/j.rinp.2022.105775
![]() |
[28] |
S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, A mathematical analysis on the new fractal-fractional model of second-hand smokers via the power law type kernel: numerical solutions, equilibrium points, and sensitivity analysis, J. Funct. Spaces, 2022 (2022), 1–26. https://doi.org/10.1155/2022/3553021 doi: 10.1155/2022/3553021
![]() |
[29] |
M. Al Qurashi, S. Rashid, S. Sultana, F. Jarad, A. M. Alsharif, Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory, AIMS Math., 7 (2022), 12587–12619. https://doi.org/10.3934/math.2022697 doi: 10.3934/math.2022697
![]() |
[30] |
S. Rashid, R. Ashraf, F. Jarad, Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels, AIMS Math., 7 (2022), 7936–7963. https://doi.org/10.3934/math.2022444 doi: 10.3934/math.2022444
![]() |
[31] |
S. Rashid, F. Jarad, A. G. Ahmad, K. M. Abualnaja, New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results Phys., 35 (2022), 105304. https://doi.org/10.1016/j.rinp.2022.105304 doi: 10.1016/j.rinp.2022.105304
![]() |
[32] |
H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth sscheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
![]() |
[33] |
W. Sintunavarat, A. Turab, A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory, PLoS ONE, 17 (2022), e0270148. https://doi.org/10.1371/journal.pone.0270148 doi: 10.1371/journal.pone.0270148
![]() |
[34] |
S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-type inequality for control of a ψ-model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023. https://doi.org/10.3390/math10214023 doi: 10.3390/math10214023
![]() |
[35] |
W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Solitons Fract., 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199
![]() |
[36] |
R. Kanno, Representation of random walk in fractal space-time, Phys. A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
![]() |
[37] |
W. Chen, H. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020 doi: 10.1016/j.camwa.2009.08.020
![]() |
[38] |
H. G. Sun, M. M. Meerschaert, Y. Zhang, J. Zhu, W. Chen, A fractal Richards' equation to capture the non-Boltzmann scaling of water transport in unsaturated media, Adv. Water Resour., 52 (2013), 292–295. https://doi.org/10.1016/j.advwatres.2012.11.005 doi: 10.1016/j.advwatres.2012.11.005
![]() |
[39] |
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[40] |
S. Rezapour, S. Etemad, İ. Avci, H. Ahmad, A. Hussain, A study on the fractal-fractional epidemic probability-based model of SARS-CoV-2 virus along with the Taylor operational matrix method for its Caputo version, J. Funct. Spaces, 2022 (2022), 1–33. https://doi.org/10.1155/2022/2388557 doi: 10.1155/2022/2388557
![]() |
[41] |
S. Etemad, İ. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
![]() |
[42] |
Z. Ali, F. Rabiei, M. M. Rashidi, T. Khodadadi, A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions, Eur. Phys. J. Plus, 137 (2022), 395. https://doi.org/10.1140/epjp/s13360-022-02603-z doi: 10.1140/epjp/s13360-022-02603-z
![]() |
[43] |
K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2022), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039
![]() |
[44] |
A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fract., 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020
![]() |
[45] |
J. F. Goméz-Aguilar, Chaos and multiple attarctors in a fractal-fractional Shinriki's oscillator model, Phys. A: Stat. Mech. Appl., 539 (2019), 122918. https://doi.org/10.1016/j.physa.2019.122918 doi: 10.1016/j.physa.2019.122918
![]() |
[46] |
S. Rashid, F. Jarad, A. G. Ahmad, A novel fractal-fractional order model for the understanding of an oscillatory and complex behavior of human liver with non-singular kernel, Results Phys., 35 (2022), 105292. https://doi.org/10.1016/j.rinp.2022.105292 doi: 10.1016/j.rinp.2022.105292
![]() |
[47] |
R. I. Gweryina1, F. S. Kaduna, M. Y. Kura, Qualitative analysis of a mathematical model of divorce epidemic with anti-divorce therapy, Eng. Appl. Sci. Lett., 4 (2021), 1–11. https://doi.org/10.30538/psrp-easl2021.0066 doi: 10.30538/psrp-easl2021.0066
![]() |
[48] |
P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[49] | M. Martcheva, An introduction to mathematical epidemiology, New York: Springer, 2015. |
[50] | E. U. Nwafor, C. J. Okoro, S. C. Inyama, A. Omame, H. I. Mbachu, Analysis of a mathematical vaccination model of an infectious measles disease, Futo J. Ser., 5 (2019), 168–188. |
[51] |
L. C. Mpande, D. Kajunguri, E. A. Mpolya, Modeling and stability analysis for measles metapopulation model with vaccination, Appl. Comput. Math., 4 (2015), 431–444. https://doi.org/10.11648/j.acm.20150406.16 doi: 10.11648/j.acm.20150406.16
![]() |
[52] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and nonsingular kernel: application to chaotic models, Eur. Phy. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
![]() |
[53] | A. Atangana, S. I. Araz, New numerical scheme with newton polynomial, 1 Ed., Elsevier, 2021. |
1. | Kin Keung Lai, Jaya Bisht, Nidhi Sharma, Shashi Kant Mishra, Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions, 2022, 10, 2227-7390, 264, 10.3390/math10020264 | |
2. | Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629 | |
3. | Lei Geng, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Rahat Bano, Yusuf Gurefe, Fractional Version of Hermite-Hadamard and Fejér Type Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2935740 | |
4. | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824 | |
5. | Yeliang Xiao, Muhammad Shoaib Saleem, Faiza Batool, Xiaolong Qin, Some Fractional Integral Inequalities for a Generalized Class of Nonconvex Functions, 2022, 2022, 2314-4785, 1, 10.1155/2022/3476461 | |
6. | Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408 | |
7. | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of Pseudo L−R interval order relations via fractional integral operators having non-singular kernel, 2024, 9, 2473-6988, 16061, 10.3934/math.2024778 | |
8. | Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, 2024, 21, 1551-0018, 3422, 10.3934/mbe.2024151 | |
9. | Hanan Alohali, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, Ahmed Alamer, Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane, 2024, 13, 2075-1680, 684, 10.3390/axioms13100684 | |
10. | Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly, Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems, 2024, 12, 2227-7390, 382, 10.3390/math12030382 | |
11. | Maryam Gharamah Ali Alshehri, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Yoshihiro Sawano, Some New Improvements for Fractional Hermite–Hadamard Inequalities by Jensen–Mercer Inequalities, 2024, 2024, 2314-8896, 10.1155/2024/6691058 | |
12. | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Kwara Nantomah, Ding-Xuan Zhou, Some Novel Inequalities for Godunova–Levin Preinvex Functions via Interval Set Inclusion (⊆) Relation, 2025, 2025, 2314-4629, 10.1155/jom/5570638 |