The subject of this work is the existence and Mittag-Leffler-Ulam (MLU) stability of solutions for fractional pantograph equations with three sequential fractional derivatives. Sufficient conditions for the existence and uniqueness of solutions are constructed by utilizing well-known classical fixed point theorems such as the Banach contraction principle, and Leray-Schauder nonlinear alternative. The generalized singular Gronwall's inequality is used to show the MLU stability results. An illustrated example is provided to support the main findings.
Citation: Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad. Existence and stability results of pantograph equation with three sequential fractional derivatives[J]. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
The subject of this work is the existence and Mittag-Leffler-Ulam (MLU) stability of solutions for fractional pantograph equations with three sequential fractional derivatives. Sufficient conditions for the existence and uniqueness of solutions are constructed by utilizing well-known classical fixed point theorems such as the Banach contraction principle, and Leray-Schauder nonlinear alternative. The generalized singular Gronwall's inequality is used to show the MLU stability results. An illustrated example is provided to support the main findings.
[1] | M. Ahmad, J. Jiang, A. Zada, Z. Ali, Z. Fu, J. Xu, Hyers-Ulam-Mittag-Leffler stability for a system of fractional neutral differential equations, Discrete Dyn. Nat. Soc., 2020 (2020), 2786041. https://doi.org/10.1155/2020/2786041 doi: 10.1155/2020/2786041 |
[2] | I. Ahmad, J. J. Nieto, G. U. Rahman, K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differ. Equ., 132 (2020), 1–16. |
[3] | G. Ali, K. Shah, G. ur Rahman, Investigating a class of pantograph differential equations under multi-points boundary conditions with fractional order, Int. J. Appl. Comput. Math., 7 (2021), 2. https://doi.org/10.1007/s40819-020-00932-0 doi: 10.1007/s40819-020-00932-0 |
[4] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[5] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[6] | Y. Gouari, Z. Dahmani, I. Jebri, Application of fractional calculus on a new differential problem of Duffing type, Adv. Math.: Sci. J., 9 (2020), 10989–11002. https://doi.org/10.37418/amsj.9.12.82 doi: 10.37418/amsj.9.12.82 |
[7] | M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineqal., 4 (2020), 29–38. |
[8] | M. Houas, M, Bezziou, Existence of solutions for neutral Caputo-type fractional integro-differential equations with nonlocal boundary conditions, Commun. Optim. Theory, 2021 (2021), 10. |
[9] | M. Houas, Z. Dahmani, On existence of solutions for fractional differential equations with nonlocal multi-point boundary conditions, Lobachevskii J. Math., 37 (2016), 120–127. https://doi.org/10.1134/S1995080216020050 doi: 10.1134/S1995080216020050 |
[10] | A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math., 24 (1997), 295–308. https://doi.org/10.1016/S0168-9274(97)00027-5 doi: 10.1016/S0168-9274(97)00027-5 |
[11] | A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966 |
[12] | E. T. Karimov, B. Lopez, K. Sadarangani, About the existence of solutions for a hybrid nonlinear generalized fractional pantograph equation, Fract. Differ. Calculus, 6 (2016), 95–110. https://doi.org/10.7153/fdc-06-06 doi: 10.7153/fdc-06-06 |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V. Amsterdam, 2006. |
[14] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear. Anal., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042 |
[15] | S. Y. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013 (2013), 549. https://doi.org/10.1186/1029-242X-2013-549 doi: 10.1186/1029-242X-2013-549 |
[16] | S. K. Ntouyas, A. Alsaedi, B. Ahmad, Existence theorems for mixed Riemann-Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integro-differential boundary conditions, Fractal Fract., 3 (2019), 21. https://doi.org/10.3390/fractalfract3020021 doi: 10.3390/fractalfract3020021 |
[17] | S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comen., 90 (2021), 171–185. |
[18] | L. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[19] | K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of $\psi -$fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154 |
[20] | M. Sezer, S. Yalçinbaş, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024 |
[21] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[22] | D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 23 (2016), 685–698. |
[23] | D. Vivek, E. M. Elsayed, K. Kanagarajan, Existence and Ulam stability results for a class of boundary value problem of neutral pantograph equations with complex order, SeMA J., 77 (2021), 243–256. https://doi.org/10.1007/s40324-020-00214-1 doi: 10.1007/s40324-020-00214-1 |
[24] | J. Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63 (2014), 1181–1190. https://doi.org/10.1080/02331934.2014.906597 doi: 10.1080/02331934.2014.906597 |
[25] | Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. https://doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013 |
[26] | M. R. Fatehi, M. Samavat, M. A. Vali, F. Khaleghi, State analysis and optimal control of linear time-invariant scaled systems using the Chebyshev wavelets, Contemp. Eng. Sci., 5 (2012), 91–105. |
[27] | F. Ghomanjani, M. H. Farahi, A. V. Kamyad, Numerical solution of some linear optimal control systems with pantograph delays, IMA J. Math. Control Inf., 32 (2015), 225–243. https://doi.org/10.1093/imamci/dnt037 doi: 10.1093/imamci/dnt037 |
[28] | S. M. Hoseini, Optimal control of linear pantograph-type delay systems via composite Legendre method, J. Franklin Inst., 357 (2020), 5402–5427. https://doi.org/10.1016/j.jfranklin.2020.02.051 doi: 10.1016/j.jfranklin.2020.02.051 |
[29] | Z. Gong, C. Liu, K. L. Teo, X. Yi, Optimal control of nonlinear fractional systems with multiple pantograph-delays, Appl. Math. Comput., 425 (2022), 127094. https://doi.org/10.1016/j.amc.2022.127094 doi: 10.1016/j.amc.2022.127094 |
[30] | J. F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel, Phys. A: Stat. Mech. Appl., 465 (2017), 562–572. https://doi.org/10.1016/j.physa.2016.08.072 doi: 10.1016/j.physa.2016.08.072 |
[31] | J. F. Gómez-Aguilar, A. Atangana, Time-fractional variable-order telegraph equation involving operators with Mittag-Leffler kernel, J. Electromagnet. Waves Appl., 33 (2019), 165–177. https://doi.org/10.1080/09205071.2018.1531791 doi: 10.1080/09205071.2018.1531791 |
[32] | P. Pandey, J. F. Gómez-Aguilar, On solution of a class of nonlinear variable order fractional reaction-diffusion equation with Mittag-Leffler kernel, Numer. Methods Partial Differ. Equ., 37 (2021), 998–1011. https://doi.org/10.1002/num.22563 doi: 10.1002/num.22563 |
[33] | J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equ., 2017 (2017), 68. https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7 |